Russian Journal of Plant Physiology

, Volume 49, Issue 3, pp 303–310 | Cite as

Carbonic Anhydrase in Subchloroplast Particles of Pea Plants

  • N. A. Pronina
  • S. I. Allakhverdiev
  • E. V. Kupriyanova
  • G. L. Klyachko-Gurvich
  • V. V. Klimov


The partitioning of carbonic anhydrase (CA) activity in chloroplasts isolated from 10–14-day-old pea (Pisum sativum L.) seedlings was investigated. The effect of CA inhibitors on the kinetics of chlorophyll fluorescence in photosystem II (PSII) preparations was also studied. The activity of CA was detected in fractions of soluble proteins and in the polypeptide complexes of the PSI and PSII. Isolated particles of photosystems retained a high photochemical activity similar to that of intact chloroplasts and the high level of polyunsaturated fatty acids. The association of CA with the particles of PSII (PSII-CA) was also tested by Western-blot analysis using antibodies against PSII-CA (Cah3) from Chlamydomonas reinhardtii. The PSII particles isolated with Triton X-100 (T-20) showed a higher activity of the enzyme as calculated on a protein basis than the DT-20 particles isolated with digitonin and Triton X-100. This difference seems to be related to the higher degree of nativity of the chloroplast T-20 fragments as compared to DT-20 particles. The higher level of chlorophyll per reaction center as well as the higher content of chlorophyll b and lipid fatty acids as calculated on protein basis, in particular of E-16:1ω13 acid, which stabilizes the oligomeric structure of the light-harvesting complex of the PSII, also confirms this suggestion. The activity of CA was not detected in the DT-20 preparations treated with Tris–HCl to eliminate manganese ions. This is likely to indicate that one of the extrinsic polypeptides of PSII exhibits CA activity. Specific inhibitors of CA (acetazolamide and imidazole) inhibited the photoinduced yield of chlorophyll fluorescence (ΔF). This might be determined by damaging the water-oxidizing system or its interaction with the PSII reaction centers. The functional role of PSII-CA for СО2-concentrating in carboxylation sites as well as its role in the coupling of light and dark reactions in chloroplasts is discussed.

Pisum sativum carbonic anhydrase location chloroplasts photosystems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shpak, G.E., About the Biological Role of Carbonic Anhydrase in Animal Organism, Usp. Sovrem. Biol., 1980, vol. 89, pp. 18-27.Google Scholar
  2. 2.
    Pronina, N.A. and Semenenko, V.E., Localization of Membrane-Asssociated and Soluble Forms of Carbonic Anhydrase in Chlorella Cells, Fiziol. Rast. (Moscow), 1984, vol. 31, pp. 241-251 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  3. 3.
    Aizawa, K. and Miyachi, S., Carbonic Anhydrase and CO2 Concentrating Mechanism in Microalgae and Cyanobacteria, Fed. Eur. Microbiol. Soc. Microbiol. Rev., 1986, vol. 39, pp. 215-233.Google Scholar
  4. 4.
    Moroney, J.V. and Somanchi, A., How Do Algae Concentrate CO2 to Increase the Efficiency of Photosynthetic Carbon Fixation? Plant Physiol., 1999, vol. 119, pp. 9-16.Google Scholar
  5. 5.
    Kaplan, A. and Reinnhold, L., CO2 Concentrating Mechanisms in Photosynthetic Microorganisms, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 539-570.Google Scholar
  6. 6.
    Pronina, N.A., Klyachko-Gurvich, G.L., Ladygin, V.G., and Semenenko, V.E., The Activity of Carbonic Anhydrase in Chlamydomonas reinhardtii Mutants with Different Organization of Chloroplast Photosystems, Fiziol. Rast. (Moscow), 1990, vol. 37, pp. 899-906 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  7. 7.
    Park, Y., Karlsson, J., Rojdestvenski, I., Pronina, N., Klimov, V., Oquist, G., and Samuelsson, G., Role of a Novel Photosystem II-Associated Carbonic Anhydrase in Photosynthetic Carbon Assimilation in Chlamydomonas reinhardtii, FEBS Lett., 1999, vol. 444, pp. 102-105.Google Scholar
  8. 8.
    Pronina, N.A., The Organization and Physiological Role of the CO2-CM in Microalgal Photosynthesis, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 801-810 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  9. 9.
    Fukuzawa, H., Fujiwara, S., Yamamoto, Y., Dionisio-Sese, M.L., and Miyachi, S., cDNA Cloning, Sequence, and Expression of Carbonic Anhydrase in Chlamydomonas reinhardtii: Regulation by Environmental CO2 Concentration, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 4383-4387.Google Scholar
  10. 10.
    Badger, M.R. and Price, G.D., The Role of Carbonic Anhydrase in Photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1994, vol. 45, pp. 369-392.Google Scholar
  11. 11.
    Smith, K. and Ferry, J.G., Prokaryotic Carbonic Anhydrases, FEMS Microbiol. Rev., 2000, vol. 24, pp. 335-336.Google Scholar
  12. 12.
    Sultemeyer, D., Schmidt, C., and Fock, H.P., Carbonic Anhydrase in Higher Plants and Aquatic Microorganisms, Physiol. Plant., 1993, vol. 88, pp. 179-190.Google Scholar
  13. 13.
    Utsumoniya, E. and Muto, S., Carbonic Anhydrase in the Plasma Membranes from Leaves of C3 and C4 Plants, Physiol. Plant., 1993, vol. 88, pp. 413-419.Google Scholar
  14. 14.
    Ignatova, L.K., Moskvin, O.V., Romanova, A.K., and Ivanov, B.N., Carbonic Anhydrase in C3-Plant Leaf Cell, Aust. J. Plant Physiol., 1998, vol. 25, pp. 673-677.Google Scholar
  15. 15.
    Bunell, J.N., Gibbs, M.J., and Hatch, M.D., Spinach Chloroplastic Carbonic Anhydrase: Nucleotide Sequence Analysis of cDNA, Plant Physiol., 1990, vol. 92, pp. 37-40.Google Scholar
  16. 16.
    Majeau, N. and Coleman, J.R., Isolation and Characterization of cDNA Coding for Pea Chloroplastic Carbonic Anhydrase, Plant Physiol., 1991, vol. 95, pp. 264-268.Google Scholar
  17. 17.
    Vaklinova, S.G., Goushina, L.M., and Lazova, G.N., Carbonic Anhydrase Activity in Chloroplasts and Chloroplast Fragments, Dokl. Bulg. Akad. Nauk, 1982, vol. 35, pp. 1721-1724.Google Scholar
  18. 18.
    Stemler, A., Carbonic Anhydrase Associated with Thylakoids and Photosystem II Particles from Maize, Biochim. Biophys. Acta, 1986, vol. 850, pp. 97-107.Google Scholar
  19. 19.
    Pronina, N.A., Allakhverdiev, S.I., Klyachko-Gurvich, G.L., Klimov, V.V., and Semenenko, V.E., The Localization of Carbonic Anhydrase in the Particles of Photosystem I and Photosystem II from Pea Chloroplasts, Tezisy Vses. konf. Preobrazovanie svetovoi energii v fotosinteziruy-ushchikh sistemakh i ikh modelyakh (All-Union Conf. Light Energy Transformation in Photosynthesizing Systems and Their Models, Abstracts), Pushchino, 1989, pp. 172-173.Google Scholar
  20. 20.
    Moskvin, O.V., Ignatova, L.K., Ovchinnikova, V.I., and Ivanov, B.N., Membrane-Associated Carbonic Anhydrase of Pea Thylakoids, Biokhimiya, 1995, vol. 60, pp. 1130-1137.Google Scholar
  21. 21.
    Stemler, A. and Jursinic, P., The Effects of Carbonic Anhydrase Inhibitors Formate, Bicarbonate, Acetazolamide, and Imidazole on Photosystem II in Maize Chloroplasts, Arch. Biochem. Biophys., 1983, vol. 221, pp. 227-237.Google Scholar
  22. 22.
    Watley, F.R. and Arnon, D.Y., Photosynthetic Phosphorylation in Plants, Methods Enzymol., 1963, vol. 6, pp. 308-313.Google Scholar
  23. 23.
    Bekina, R.M. and Krasnovsky, A.A., The Maintenance of Phosphorylation Activity during Preservation of Isolated Chloroplasts, Biokhimiya, 1968, vol. 33, pp. 178-181.Google Scholar
  24. 24.
    Klimov, V.V., Allakhverdiev, S.I., Shuvalov, V.A., and Krasnovsky, A.A., Effect of Extraction and Re-Addition of Manganese on Light Reactions of Photosystem II Preparations, FEBS Lett., 1982, vol. 148, pp. 307-312.Google Scholar
  25. 25.
    Klyachko-Gurvich, G.L., Ladygin, V.G., Pronina, N.A., Ryabykh, I.B., and Semenenko, V.E., Specific Composition of Fatty Acids in Lipids of Chlamydomonas reinhardtii Mutants with Different Organization of Chloroplast Photosystems, Fiziol. Rast. (Moscow), 1991, vol. 38, pp. 1171-1180 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  26. 26.
    Porra, R.J., Thompson, W.A., and Kriedemann, P.E., Determination of Accurate Extinction Coefficients and Simultaneous Equation for Assaying Chlorophyll a and b with Four Different Solvents: Verification of the Concentration of Chlorophyll by Atomic Absorption Spectroscopy, Biochim. Biophys. Acta, 1989, vol. 975, pp. 384-394.Google Scholar
  27. 27.
    Arnon, D.I., Copper Enzymes in Isolated Chloroplasts, Plant Physiol., 1949, vol. 24, pp. 1-24.Google Scholar
  28. 28.
    Lowry, D., Rosebrough, N., Farr, A., and Randal, R., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265-275.Google Scholar
  29. 29.
    Trémoliéres, A., Dainese, P., and Bassi, R., Heterogeneous Lipid Distribution among Chlorophyll-Binding Proteins of Photosystem II in Maize Mesophyll Chloroplasts, Eur. J. Biochem., 1994, vol. 221, pp. 721-730.Google Scholar
  30. 30.
    Manuilskaya, S.V., Role of Thylakoid Membrane Components in Functioning of the Photosynthetic Apparatus and Adaptation to Environmental Conditions, Fiziol. Biokhim. Kul't. Rast., 1987, vol. 19, pp. 29-41.Google Scholar
  31. 31.
    Karlsson, J., Clarke, A.K., Chen, Z.Y., Hugghins, S.Y., Park, Y.I., Husic, H.D., Moroney, J.V., and Samuelsson, G., A Novel Alpha-Type Carbonic Anhydrase Associated with the Thylakoid Membrane in Chlamydomonas reinhardtii Is Required at Ambient CO2, EMBO J., 1999, vol. 17, pp. 1208-1216.Google Scholar
  32. 32.
    Pronina, N.A. and Borodin, V.V., CO2-Stress and CO2-Concentration Mechanism: Investigation by Means of Photosystem-Deficient and Carbonic Anhydrase-Deficient Mutants of Chlamydomonas reinhardtii, Photosynthetica, 1993, vol. 28, pp. 515-522.Google Scholar
  33. 33.
    Sarojini, G. and Govindjiee, On the Species in Bicarbonate Stimulation of Hill Reaction in Thylakoid Membrane, Biochim. Biophys. Acta, 1980, vol. 634, pp. 340-348.Google Scholar
  34. 34.
    Vermaas, W.F.J. and Govindjiee, Unique Role of Carbon Dioxide and Bicarbonate in the Photosynthetic Electron Transport System, Proc. Indian Natl. Sci. Acad., 1981, vol. 47, pp. 581-605.Google Scholar
  35. 35.
    Stemler, A. and Murphy, J., Bicarbonate-Reversible and Irreversible Inhibition of Photosystem II by Monovalent Anions, Plant Physiol., 1985, vol. 77, pp. 974-982.Google Scholar
  36. 36.
    Klimov, V.V., Allakhverdiev, S.I., Feyzyev, Ya.M., and Baranov, S.V., Bicarbonate Requirement for the Donor Side of Photosystem II, FEBS Lett., 1995, vol. 363, pp. 251-255.Google Scholar
  37. 37.
    Van Rensen, J.J., Tonk, W.J.M., and Bruijn, S.M., Involvement of Bicarbonate in the Protonation of the Secondary Quinone Electron Acceptor of Photosystem II via the Non-Heme Iron Acceptor Complex, FEBS Lett., 1988, vol. 226, pp. 347-351.Google Scholar
  38. 38.
    Klimov, V.V., Hulsebosch, R., Allakhverdiev, S.I., Wincensjusz, H., van Gorkom, H., and Hoff, A., Bicarbonate May Be Required for Ligation of Manganese in the Oxygen-Evolving Complex of Photosystem II, Biochemistry, 1997, vol. 36, pp. 16277-16281.Google Scholar
  39. 39.
    Kozlov, Yu.N., Kazakova, A.A., and Klimov, V.V., Change of the Redox Potential and Catalase Activity of Mn2+ Ions during Formation of Mn-Bicarbonate Complex, Membr. Cell Biol., 1997, vol. 11, pp. 115-120.Google Scholar
  40. 40.
    McKay, R.M. and Gibbs, S.P., Composition and Function of Pyrenoids: Cytochemical and Immunocytochemical Approaches, Can. J. Bot., 1991, vol. 69, pp. 1040-1052.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • N. A. Pronina
    • 1
  • S. I. Allakhverdiev
    • 2
  • E. V. Kupriyanova
    • 1
  • G. L. Klyachko-Gurvich
    • 1
  • V. V. Klimov
    • 2
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Basic Problems of BiologyRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations