Skip to main content
Log in

De Morgan Property for Effect Algebras of von Neumann Algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that the unit interval of a von Neumann algebra is a Sum Brouwer–Zadeh algebra when equipped with another unary operation sending each element to the complement of its range projection. The main result of this Letter says that a von Neumann algebra is finite if and only if the corresponding Brouwer–Zadeh structure is de Morgan or, equivalently, if the range projection map preserves infima in the unit interval. This provides a new characterization of finiteness in the Murray–von Neumann structure theory of von Neumann algebras in terms of Brouwer–Zadeh structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busch, P., Grabowski, M. and Lahti, P. J.: Operational Quantum Physics, Lecture Notes in Phys. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  2. Cattaneo, G.: A unified framework for the algebra of unsharp quantum mechanics, Internat. J. Theoret. Phys. 36 (1997), 3085–3117.

    Google Scholar 

  3. Cattaneo, G. and Nisticò, G.: Brouwer-Zadeh posets and three valued ?ukasiewicz posets, Fuzzy Sets and Systems 33 (1989), 165–190.

    Google Scholar 

  4. Cattaneo, G. and Giuntini, R.: Some results on BZ structures from Hilbertian unsharp quantum physics, Found. Phys. 25 (1995), 1147–1183.

    Google Scholar 

  5. Dalla Chiara, M. L. and Giuntini, R.: Unsharp quantum logics, Found. Phys. 24 (1994), 1161–1177.

    Google Scholar 

  6. Dvurecenskij, A.: Measures and ?-decomposable measures on effect algebras of a Hilbért space, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), 259–288.

    Google Scholar 

  7. Foulis, D. J. and Bennett, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346.

    Google Scholar 

  8. Foulis, D. J. and Randall, C.: Empirical logic and tensor product, In: H. Neumann (ed.), Interpretation and Foundations of Quantum Mechanics, Wissenschaftsverlag, Bibliographisches Institut, Mannheim, 1981, pp. 9–20.

    Google Scholar 

  9. Gudder, S.: Semi-orthoposets, Internat. J. Theoret. Phys. 35 (1996), 1141–1173.

    Google Scholar 

  10. Gudder, S.: Sharply dominating effect algebras, Tatra Mt. Math. Publ. 15 (1998), 23–30; Special Issue: Quantum Structures II, Dedicated to Gudrun Kalmbach.

    Google Scholar 

  11. Kadison, R. V. and Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras II, Academic Press, New York, 1983.

    Google Scholar 

  12. Mackey, G. W.: The Mathematical Foundations of Quantum Mechanics, Benjamin, New York, 1963.

    Google Scholar 

  13. Murphy, G. J.: C*-Algebras and Operator Theory, Academic Press, New York, 1990.

    Google Scholar 

  14. Pedersen G. K.: C*-Algebras and their Automorphism Groups, Academic Press, New York, 1989.

    Google Scholar 

  15. Segal, I. E.: Postulates for general quantum mechanics, Ann. Math. 48 (1947), 830–948.

    Google Scholar 

  16. Stratila, S. and Szidó, L.: Lectures on von Neumann Algebras, Abacus Press, England, 1979.

    Google Scholar 

  17. Takesaki, M.: Theory of Operator Algebras I, Springer-Verlag, New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, G., Hamhalter, J. De Morgan Property for Effect Algebras of von Neumann Algebras. Letters in Mathematical Physics 59, 243–252 (2002). https://doi.org/10.1023/A:1015584530597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015584530597

Navigation