Skip to main content
Log in

Chromatin Diminution Is a Key Process Explaining the Eukaryotic Genome Size Paradox and Some Mechanisms of Genetic Isolation

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Mirsky, A.E. and Ris, H., The Animal Cells and Its Evolutionary Significance, J. Gen. Physiol., 1951, vol. 34, pp. 451-462.

    Google Scholar 

  2. International Human Genome Consortium, Initial Sequencing and Analysis of the Human Genome, Nature, 2001, vol. 409, pp. 860-921.

  3. Claverie, J.-M., What If There Are Only 30 000 Human Genes?, Science, 2001, vol. 291, pp. 1225-1227.

    Google Scholar 

  4. Adams, P. et al., The Genome Sequence of Drosophila melanogaster, Science, 2000, vol. 287, pp. 2185-2195.

    Google Scholar 

  5. The C. elegans Sequencing Consortium, Science, 1998, vol. 282, pp. 2012-2018.

  6. The Arabidopsis Sequencing Consortium, Cell (Cambridge, Mass.), 2000, vol. 100, pp. 377-386.

  7. Baltimore, D., Our Genome Unveiled, Nature, 2001, vol. 409, pp. 814-816.

    Google Scholar 

  8. Petrov, D.A., Evolution of Genome Size: New Approaches to an Old Problem, Trends Genet., 2000, vol. 17, pp. 23-28.

    Google Scholar 

  9. Trower, M.K., Orton, S.M., Purvis, I.J., et al., Conservation of Synteny between the Genome of the Pufferfish (Fugu rubripes) and the Region of Human Chromosome 14 (14q24.3) Associated with Familial Disease (AD3 Locus), Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 1366-1369.

    Google Scholar 

  10. Prozorov, A.A., The Bacterial Genome: Nucleotide, Chromosome, Nucleotide Map, Mikrobiologiya, 1998, vol. 67, pp. 437-451.

    Google Scholar 

  11. Rees, H. and Jones, R.N., The Origin of the Widl Species Variation in Nuclear DNA Content, Int. Rev. Cytol., 1972, vol. 32, pp. 53-92.

    Google Scholar 

  12. Bennet, M.D. and Leicht, I.J., Nuclear DNA Amount in Angiosperms, Ann. Bot., 1995, vol. 76, pp. 113-176.

    Google Scholar 

  13. Vinogradov, A.E., The Paradox of Genome Size and the Problem of Excessive DNA, Tsitologiya, 1999, vol. 41, pp. 5-13.

    Google Scholar 

  14. Akifyev, A.P., The Concept of Basigenome and Critical Mass of Eukaryotic Chromosomes, Dokl. Akad. Nauk, 1993, vol. 332, pp. 96-98.

    Google Scholar 

  15. De Pamphilis, M.L., Replication Origin in Metazoan Chromosomes: Fact or Fiction?, BioEssays, 1999, vol. 21, pp. 5-16.

    Google Scholar 

  16. Marx, J., How DNA Replication Originates, Science, 1995, vol. 270, pp. 1585-1587.

    Google Scholar 

  17. Hotta, Y. and Stern, H., The Organization of DNA Segments Undergoing Repair Synthesis during Pachytene, Chromosoma, 1984, vol. 89, pp. 127-137.

    Google Scholar 

  18. Akifyev, A.P., Mechanisms of the Production of Chromosomal Aberrations in Eukaryotic Cells, Physiol. Gen-eral Biol. Rev., 1995, vol. 10, pp. 1-56.

    Google Scholar 

  19. Gazaryan, K.G. and Tarantul, V.Z., Genom eukariot (The Eukaryotic Genome), Moscow: Mosk. Gos. Univ., 1983.

    Google Scholar 

  20. Kidwell, M.G., Voyage of an Ancient Mariner, Nature, 1993, vol. 326, pp. 202-204.

    Google Scholar 

  21. Olmo, E., Genome Variations in the Transition from Amphibians to Reptiles, J. Mol. Evol., 1991, vol. 33, pp. 68-75.

    Google Scholar 

  22. Welkie, G.S., Drosophila melanogaster mRNA for Tip Associating Protein (sbr Gene), GenBank/EMBL/DDBJ, 1999, 12.21: AJ251947 (http//www.ucbi.net.nih.gov/ entrez/query.fcgi? cmd = Search &; ab = Nucleotid e &;doptcmal = GenBank &; tool = Fly Base &; term = AJ 251947 [ACCN]).

  23. Wood, R.D., Mitchell, M., Sgouros, J., and Lindahl, T., Human DNA Repair Genes, Science, 2001, vol. 291, pp. 1284-1289.

    Google Scholar 

  24. Callan, H.G., The Organization of Genetic Units in Chromosomes, J. Cell Sci., 1967, vol. 2, pp. 2-7.

    Google Scholar 

  25. Callan, H.G., Lampbrush Chromosomes, Berlin: Springer-Verlag, 1986.

    Google Scholar 

  26. Britten, R.J. and Davidson, E.H., Organization, Transcription and Regulation in the Animal Genome, Quart. Rev. Biol., 1973, vol. 48, pp. 565-613.

    Google Scholar 

  27. Georgiev, G.P., A Hypothesis of the Operon Structural Organization and DNA Synthesis Regulation in the Animal Cell, Mol. Biol. (Moscow), 1970, vol. 4, pp. 17-29.

    Google Scholar 

  28. Crick, F., General Model for Chromosomes of Higher Organisms, Nature, 1971, vol. 234, pp. 25-27.

    Google Scholar 

  29. Akifyev, A.P. and Makarov, V.B., The Genetic and Functional Organization of Chromosomes in Higher Plants and Animals, Usp. Sovrem. Biol., 1972, vol. 74, pp. 401-419.

    Google Scholar 

  30. Akifyev, A.P., “Silent” DNA and Its Evolutionary Role, Priroda, 1974, no. 9, pp. 49-54.

  31. Doolittle, W.F. and Sapienza, C., Selfish Genes, the Phenotype Paradigm, and Genome Evolution, Nature, 1980, vol. 284, pp. 61-603.

    Google Scholar 

  32. Dulitl, U.F., Fourteen Months of the Concept of “Selfish DNA,” Evolyutsiya genoma (Genome Evolution), Moscow: Mir, 1986, pp. 13-19.

    Google Scholar 

  33. Orgel, L.E. and Crick, F.H., Selfish DNA: The Ultimate Parasite, Nature, 1980, vol. 284, pp. 645-646.

    Google Scholar 

  34. Hurst, G.D.D. and Schilthuizen, M., Selfish Genetic Elements and Speciation, Heredity, 1998, vol. 80, pp. 2-8.

    Google Scholar 

  35. Antonov, A.S., Evolyutsiya genoma (Genome Evolution), Moscow: Mir, 1986, pp. 5-8.

    Google Scholar 

  36. Yablokov, A.V. and Yusufov, A.G., Evolyutsionnoe uchenie (The Theory of Evolution), Moscow: Vysshaya Shkola, 1998.

    Google Scholar 

  37. Kim, A.I., Pasyukova, E.G., Karpova, N.N., and Razorenova, O.V., Genomic Factors Regulating Transposition of Drosophila Mobile Elements, Genetika (Moscow), 1999, vol. 35, no. 11, pp. 1511-1521.

    Google Scholar 

  38. Cavalier-Smith, T., Nuclear Volume Control by Nucleoskeletal DNA, Selection for Cell Volume and Cell Growth Rate, and the Solution of the DNA C-Value Paradox, J. Cell Sci., 1978, vol. 34, pp. 247-278.

    Google Scholar 

  39. Tobler, H., The Differentiation of Germline and Somatic Line in Nematodes, Results and Problems in Cell Differentiation, Hennig, W., Ed., New York, 1986, vol. 13, pp. 1-70.

  40. Prescott, D.M., The C-Value Paradox and Genes in Ciliated Protozoa, Modern Cell Biol., 1983, vol. 2, pp. 329-352.

    Google Scholar 

  41. Prescott, D.M., Origin, Evolution and Excision of Internal Eliminated Segments in Germline Genes of Ciliates, Curr. Opin. Genet. Dev., 1997, vol. 7, pp. 807-813.

    Google Scholar 

  42. Prescott, D.M., The Evolutionary Scrambling and Developmental Unscrambling of Germ Line Genes in Hypotrichous ciliates, Nucleic Acids Res., 1999, vol. 27, pp. 1243-1250.

    Google Scholar 

  43. Grishanin, A.K., Khudolii, G.A., Shaikhaev, G.O., et al., Chromatin Diminution in C. kolensis (Crustacea, Copepoda): A Unique Example of Gene Engineering in Nature, Genetika (Moscow), 1996, vol. 32, pp. 492-499.

    Google Scholar 

  44. Crishanin, A.K. and Akifyev, A.P., Interpopulation Differentiation within C. kolensis and C. strenuus strenuus (Crustacea: Copepoda): Evidence from Cytogenetic Methods, Hydrobiologia, 2000, vol. 417, pp. 37-42.

    Google Scholar 

  45. Akifyev, A.P., Grishanin, A.K., and Degtyarev, S.V., Chromatin Diminution Associated with Reorganization of the Molecular Structure of the Genome: Evolutionary Aspects, Genetika (Moscow), 1998, vol. 34, no. 6, pp. 709-718.

    Google Scholar 

  46. Wingaard, G., The Contribution of U.R. Einsle to the Taxonomy of the Copepoda, Hydrobiologia, 2000, vol. 417, pp. 1-10.

    Google Scholar 

  47. Degtyarev, S.V., Grishanin, A.K., Rubtsov, N.B., et al., DNA Nucleotide Sequences Eliminated from Cyclops kolensis Somatic Cells by Chromatin Diminution, Dokl. Akad. Nauk (in press).

  48. Golubovsky, M.D., Vek genetiki: evolyutsiya idei i ponyatii (The Genetic Age: Evolution of Ideas and Concepts), St. Petersburg: Borei Art, 2000.

    Google Scholar 

  49. Zhimulev, I.F., Belyaeva, E.S., Semeshin, V.F., et al., Molecular Genetic Organization of Polytene Chromosomes, Izv. Ross. Akad. Nauk, Ser. Khim., 1995, no. 9, pp. 1622-1638.

  50. Prokof'eva-Bel'govskaya, A.A., Geterokhromaticheskie raiony khromosom (Heterochromatic Chromosome Regions), Moscow: Nauka, 1986.

    Google Scholar 

  51. Radzhabli, S.I., A Cytological Study of Mulberry: Comparison of Mulberry Varieties, in Eksperimental'naya poliploidiya v selektsii rastenii (Experimental Polyploidy in Plant Breeding), Novosibirsk: Nauka, 1986, pp. 216-234.

    Google Scholar 

  52. Akhundova, E.M., Poliploidiya i DNK (Polyploidy and DNA), Baku: Elm, 1982.

    Google Scholar 

  53. Brenner, S. et al., Characterization of the Pufferfish (Fugu) Genome as a Compact Model Vertebrate Genome, Nature, 1993, vol. 366, pp. 265-268.

    Google Scholar 

  54. Hsu, T.C., A Possible Function of Constitutive Heterochromatin: The Bodyguard Hypothesis, Genetics, 1975, vol. 79, suppl., pp. 137-150.

    Google Scholar 

  55. Gilbert, W., Why Gene in Pieces?, Nature, 1978, vol. 271, pp. 501-504.

    Google Scholar 

  56. Bernardi, G. and Bernardi, G., Compositional Constraints and Genome Evolution, J. Mol. Evol., 1986, vol. 24, pp. 1-11.

    Google Scholar 

  57. Bernardi, G., Hughes, S., and Mouchiroud, D., The Major Compositional Transitions in the Vertebrate Genome, J. Mol. Evol., 1997, vol. 44, pp. 544-551.

    Google Scholar 

  58. Esteban, M.R., Giovinazzo, G., and Godey, C., Chromatin Diminution Is Strictly Correlated to Somatic Cell Behavior on Early Development of the Nematode Parascaric univalens, J. Cell. Sci., 1995, vol. 108, pp. 2393-2404.

    Google Scholar 

  59. Grishanin, A.K., Degtyarev, S.V., and Akifyev, A.P., Chromosomal Radiosensitivity as Associated with Chromatin Diminution in Cyclops (Crustacea, Copepoda), Genetika (Moscow), 2002, vol. 38, no. 4, pp. 468-472.

    Google Scholar 

  60. Shapiro, J.A., Natural Genetic Engineering in Evolution, Genetica (The Hague), 1992, vol. 86, pp. 99-111.

    Google Scholar 

  61. Beermann, S., The Diminution of Heterochromatic Chromosomal Segment in Cyclops (Crustacea, Copepoda), Chromosoma, 1977, vol. 60, pp. 297-344.

    Google Scholar 

  62. Kuroiwa, T., Kawazu, T., Takahashi, H., et al., Comparison of Ultra-Structures between Ultra-Small Eukaryote Cyanidioschyson merolae and Cyanidiym caldarium, Cytologia, 1994, vol. 59, pp. 149-158.

    Google Scholar 

  63. Courties, C., Vaqulr, A., et al., The Smallest Eukaryotic Organism, Nature, 1994, vol. 370, p. 255.

    Google Scholar 

  64. Telford, Ch.A., Kuroda-Kawaguchi, T., Skaletsky, H., et al., A Physical Map of the Human Y Chromosome, Nature, 2001, vol. 409, pp. 943-945.

    Google Scholar 

  65. Degtyarev, S.V., Terent'ev, M.A., Zhakova, O.Yu., and Akifyev, A.P., Cyclic Structures of Mouse and Human DNAs as a Possible Model of Mobile Elements of the Eukaryotic Genome, Dokl. Akad. Nauk SSSR, 1982, vol. 265, pp. 206-209.

    Google Scholar 

  66. Auerbakh, Sh., Problemy mutageneza (Problems in Mutagenesis), Moscow: Mir, 1978.

    Google Scholar 

  67. Vorontsov, N.N., Teoriya evolyutsii: istoki, postulaty i problemy (The Evolutionary Theory: The Origin, Postulates, and Problems), Moscow: Znanie, 1984.

    Google Scholar 

  68. Eldredge, N. and Could, S.J., Punctuated Equilibria: An Alternative to Phyletic Gradualism, Models in Paleobiology, San Francisco: Freeman, 1972, pp. 82-115.

    Google Scholar 

  69. Gvozdev, V.A. and Kaidanov, L.Z., Genome Variation Caused by Mobile Element Transposition and Individual Fitness in D. melanogaster, Zh. Obshch. Biol., 1986, vol. 47, pp. 51-63.

    Google Scholar 

  70. Grishanin, A.K. and Akifyev, A.P., Chromatin Diminution and Chromosome Organization in Cyclops strenuus strenuous, Genetika (Moscow), 1993, vol. 29, pp. 1099-1107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akifyev, A.P., Grishanin, A.K. & Degtyarev, S.V. Chromatin Diminution Is a Key Process Explaining the Eukaryotic Genome Size Paradox and Some Mechanisms of Genetic Isolation. Russian Journal of Genetics 38, 486–495 (2002). https://doi.org/10.1023/A:1015578811571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015578811571

Keywords

Navigation