Skip to main content
Log in

A New Model for Heat Flow in Extensional Basins: Estimating Radiogenic Heat Production

  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Radiogenic heat production (RHP) represents a significant fraction of surface heat flow, both on cratons and in sedimentary basins. RHP within continental crust—especially the upper crust—is high. RHP at any depth within the crust can be estimated as a function of crustal age. Mantle RHP, in contrast, is always low, contributing at most 1 to 2 mW/m2 to total heat flow. Radiogenic heat from any noncrystalline basement that may be present also contributes to total heat flow. RHP from metamorphic rocks is similar to or slightly lower than that from their precursor sedimentary rocks. When extension of the lithosphere occurs—as for example during rifting—the radiogenic contribution of each layer of the lithosphere and noncrystalline basement diminishes in direct proportion to the degree of extension of that layer. Lithospheric RHP today is somewhat less than in the distant past, as a result of radioactive decay. In modeling, RHP can be varied through time by considering the half lives of uranium, thorium, and potassium, and the proportional contribution of each of those elements to total RHP from basement. RHP from sedimentary rocks ranges from low for most evaporites to high for some shales, especially those rich in organic matter. The contribution to total heat flow of radiogenic heat from sediments depends strongly on total sediment thickness, and thus differs through time as subsidence and basin filling occur. RHP can be high for thick clastic sections. RHP in sediments can be calculated using ordinary or spectral gamma-ray logs, or it can be estimated from the lithology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmad, M. U., and Finlay, R. W., 1987, Radon, radium, and other radioactivity in ground water, in Graves, B., ed., Proceedings of the NWWA Conference, April 7-9, 1987: Lewis, Chelsea, MI p. 153-170.

  • Balling, N. P., 1976, Geothermal models of the crust and uppermost mantle of the Fennoscandian Shield in south Norway and the Danish Embayment: Jour. Geophys., v. 42, no. 3, p. 237-256.

    Google Scholar 

  • Balling, N., Kristiansen, J. I., Breiner, N.,Poulsen, K.D., Rasmussen, R., and Saxov, S., 1981, Geothermal measurements and subsurface temperature modeling in Denmark: GeoSkrifter No. 16, 172 p.

  • Bartow, P., and Ledger, E. B., 1994, Determination of natural radioactivity in Wilcox lignite (Eocene), eastern Texas: Trans. Gulf Coast Assoc. Geol. Soc., v. 44, p. 79-84.

    Google Scholar 

  • Birch, F., Roy, R. F., and Decker, E. R., 1968, Heat flow and thermal history in New England and New York, in White, W., and Zen, E.-A., eds., Studies of Appalachian Geology: Northern and Maritime: Interscience, New York, p. 437-451.

    Google Scholar 

  • Bodner, D. P., and Sharp, J. M., Jr., 1988, Temperature variations in south Texas subsurface: Am. Assoc. Petroleum Geologists Bull., v. 72, no. 1, p. 21-32.

    Google Scholar 

  • Bücker, C., and Rybach, L., 1996, A simple method to determine heat production from gamma-ray logs: Mar. Pet. Geol., v. 13, no. 4, p. 373-375.

    Article  Google Scholar 

  • Buntebarth, G., 1984, Geothermics: Springer, Berlin, 144 p.

    Google Scholar 

  • Burrus, J., Brosse, E., de Choppin, J., and Grosjean, Y., 1994, Interactions between tectonism, thermal history, and paleohydrology in the Mahakam Delta, Indonesia: model results, petroleum consequences: Am. Assoc. Petroleum Geologists Bull., v. 78, no. 7, p. 1136.

    Google Scholar 

  • Carmichael, R. S., 1984, CRC Handbook of Physical Properties of Rocks, vol. III: CRC, Boca Raton, FL, 340 p.

    Google Scholar 

  • Clark, S. P., Jr., Peterman, Z. E., and Heier, K. S., 1966, Section 24. Abundances of uranium, thorium, and potassium, in Clark, S. P., Jr., ed., Handbook of Physical Constants, Rev. edn.: Geol. Soc. America Mem. 97, p. 521-541.

  • Condie, K. C., 1982, Plate tectonics & crustal evolution, (2nd edn.): Pergamon, New York, 310 p.

    Google Scholar 

  • Darby, D., Haszeldine, R. S., and Couples, G. D., 1996, Pressure cells and pressure seals in the UK Central Graben: Mar. Pet. Geol., v. 13, no. 8, p. 865-878.

    Article  Google Scholar 

  • Deming, D., 1994, Overburden rock, temperature, and heat flow, in Magoon, L. B., and Dow, W. G., eds., The Petroleum System—From Source to Trap: Am. Assoc. Petroleum Geologists Mem. 60, p. 165-186.

  • Dmitrievsky, A. N., Kireev, F. A., Botchko, R. A., and Fedorov, T. A., 1991, Hydrothermal lithogenesis as a factor for oil reservoir formation in crystalline basement of South Vietnam Shelf: Second Conference on Geology of Indochina, Hanoi, p. 409-411.

  • Duddy, I. R., Green, P. F., Bray, R. J., and Hegarty, K. A., 1994, Recognition of the thermal effects of fluid flow in sedimentary basins, in Parnell, J., ed., Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins: London Geol. Soc. Spec. Publ. No. 78, p. 325-345.

  • Förster, A., and Förster, H.-J., 2000, Crustal composition and mantle heat flow: Implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany): Jour. Geophys. Res., v. 105, no. B12, p. 27,917-27,938.

    Google Scholar 

  • Förster, A., Merriam, D. F., and Davis, J. C., 1997, Spatial analysis of temperature (BHT/DST) data and consequences for heat-flow determination in sedimentary basins: Geologische Rundschau, v. 86, no. 2, p. 252-261.

    Article  Google Scholar 

  • Funnell, R., Chapman, D., Allis, R., and Armstrong, P., 1996, Thermal state of the Taranaki Basin, New Zealand: Jour. Geophys. Res., v. 101, no. B11, p. 25,197-25,215.

    Google Scholar 

  • Furlong, K. P., and Chapman, D. S., 1987, Crustal heterogeneities and the thermal structure of the continental crust: Geophys. Res. Lett., v. 14, no. 3, p. 314-317.

    Google Scholar 

  • Hitchon, B., 1984, Geothermal gradients, hydrodynamics, and hydrocarbon occurrences, Alberta, Canada: Am. Assoc. Petroleum Geologists Bull., v. 68, no. 6, p. 713-743.

    Google Scholar 

  • Hulen, J. B., Bortz, L. C., and Bereskin, S. R., 1991, Geothermal processes in development of the Grant Canyon oil reservoir, Railroad Valley, Nye County, Nevada, in Flanigan, D. M. H., Hansen, M., and Flanigan, T. E., eds., Geology of White River Valley, the Grant Range, Eastern Railroad Valley and Western Egan Range, Nevada: Nevada Petroleum Society 1991 Field Trip Guidebook, p. 47-54.

  • Hulen, J. B., Goff, F., Ross, J. R., Bortz, L. C., and Bereskin, S. R., 1994, Geology and geothermal origin of Grant Canyon and Bacon Flat oil fields, Railroad Valley, Nevada: Am. Assoc. Pet. Geol. Bull., v. 78, no. 4, p. 596-623.

    Google Scholar 

  • Jaupart, C., 1984, On the thermal state of the Earth, in Durand, B., ed., Thermal Phenomena in Sedimentary Basins: Éditions Technip, Paris, p. 5-9.

    Google Scholar 

  • Jaupart, C., 1986, On the average amount and vertical distribution of radioactivity in the continental crust, in Burrus, J., ed., Thermal Modeling in Sedimentary Basins: Éditions Technip, Paris, p. 33-47.

    Google Scholar 

  • Jessop, A. M., Lewis, T. J., Judge, A. S., Taylor, A. E., and Drury, M. J., 1984, Terrestrial heat flow in Canada, in Čermák, V., Rybach, L., and Chapman, D. S., eds., Terrestrial Heat Flow Studies and the Structure of the Lithosphere: Tectonophysics, v. 103, no. 1-4, p. 239-261.

  • Jones, F. W., and Lam, H. L., 1984, Geothermal gradients in the Steen River area of northwestern Alberta, in Čermák, V., Rybach, L., and Chapman, D. S., eds., Terrestrial Heat Flow Studies and the Structure of the Lithosphere: Tectonophysics, v. 103, no. 1-4, p. 263-272.

  • Lachenbruch, A. H., 1968, Preliminary geothermal model of the Sierra Nevada: Jour. Geophys. Res., v. 73, no. 22, p. 6977-6989.

    Google Scholar 

  • Losh, S., Eglinton, L., Schoell, M., and Wood, J., 1999, Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, offshore Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 83, no. 2, p. 244-276.

    Google Scholar 

  • Lysak, S.V., 1992, Heat flow variations in continental rifts: Tectonophysics, v. 208, no. 1-3, p. 309-323.

    Article  Google Scholar 

  • Mareschal, J. C., Jaupart, C., Cheng, L. Z., Rolandone, F., Gariépy, C., Bienfait, G., Guillou-Fronttier, L., and Lapointe, R., 1999, Heat flow in the Trans-Hudson Orogen of the Canadian Shield: Implications for Proterozoic continental growth: Jour. Geophys. Res., v. 104, no. B12, p. 29,007-29,024.

    Google Scholar 

  • McKenna, T. E., and Sharp, J. M., Jr., 1998, Radiogenic heat production in sedimentary rocks of the Gulf of Mexico Basin, South Texas: Am. Assoc. Petroleum Geologists Bull., v. 82, no. 3, p. 484-496.

    Google Scholar 

  • McLennan, S. M., and Taylor, S. R., 1996, Heat flow and the chemical composition of continental crust: Jour. Geol., v. 104, no. 4, p. 369-377.

    Google Scholar 

  • Nyblade, A. A., and Pollack, H. N., 1993, A global analysis of heat flow from Precambrian terrains: Implications for the thermal structure of Archean and Proterozoic lithosphere: Jour. Geophys. Res., v. 98, no. B7, p. 12,207-12,218.

    Google Scholar 

  • Pedersen, T., and Bjórlykke, K., 1994, Fluid flow in sedimentary basins: Model of pore water flow in a vertical fracture: Basin Research, v. 6, no. 1, p. 1-16.

    Google Scholar 

  • Person, M., and Garven, G., 1992, Hydrologic constraints on petroleum generation within continental rift basins: Theory and application to the Rhine Graben: Am. Assoc. Petroleum Geologists Bull., v. 76, no. 4, p. 468-488.

    Google Scholar 

  • Person, M., Toupin, D., and Eadington, P., 1995, One-dimensional models of groundwater flow, sediment thermal history and petroleum generation within continental rift basins: Basin Research, v. 7, no. 1, p. 81-96.

    Google Scholar 

  • Pinet, C., Jaupart, C., Mareschal, J.-C., Gariepy, C., Bienfait, G., and Lapointe, R., 1991, Heat flow and structure of the lithosphere in the Eastern Canadian Shield: Jour. Geophys. Res., v. 96, no. B12, p. 19,941-19,963.

    Google Scholar 

  • Pitman, W. C. III, and Andrews, J. A., 1985, Subsidence and thermal history of small pull-part basins, in Biddle, K. T., and Christie-Blick,N., eds., Strike-Slip Deformation, Basin Formation, and Sedimentation: Soc. Econ. Paleon. and Mineralogists (SEPM), Spec. Publ. 37, p. 45-49.

  • Rudnick, R. L., and Fountain, D. M., 1995, Nature and composition of the continental crust: A lower crustal perspective: Rev. Geophys., v. 33, no. 3, p. 267-309.

    Article  Google Scholar 

  • Rybach, L., 1973, Determinations of heat production in rocks of the Swiss Alps: Beiträge zur Geologie der Schweiz, Geotechnische Serie, Lieferung 51: Kümmerly & Frei, Bern, 43 p. (in German).

    Google Scholar 

  • Rybach, L., 1986, Amount and significance of radioactive heat sources in sediments, in Burrus, J., ed., Thermal Modeling in Sedimentary Basins: Éditions Technip, Paris, p. 311-322.

    Google Scholar 

  • Sclater, J. G., Jaupart, C., and Galson, D., 1980, The heat flow through oceanic and continental crust and the heat loss of the earth: Rev. Geophys. Space Phys., v. 18, no. 1, p. 269-311.

    Google Scholar 

  • Steckler, M. S., 1981, The thermal and mechanical evolution of Atlantic type continental margins: unpubl. doctoral disseration, Columbia Univ., 261 p.

  • Takherist, D., and Lesquer, A., 1989, Mise enévidence d'importantes variations régionales du flux de chaleur en Algérie (Evidence for important regional variations in heat flow in Algeria): Can. Jour. Earth Sci., v. 26, no. 4, p. 615-626 (in French with English summary).

    Google Scholar 

  • Thienprasert, A., and Raksaskulwong, M., 1984, Heat flow in northern Thailand, in Čermák, V., Rybach, L., and Chapman, D. S., eds., Terrestrial Heat Flow Studies and the Structure of the Lithosphere: Tectonophysics, v. 103, no. 1-4, p. 217-233.

  • Vitorello, I., and Pollack, H. N., 1980, On the variation of continental heat flow with age and the thermal evolution of continents: Jour. Geophys. Res., v. 85, no. B2, p. 983-995.

    Google Scholar 

  • Waples, D. W., 2001, A new model for heat flow in extensional basins: Radiogenic heat, asthenospheric heat, and the McKenzie model: Natural Resources Res., v. 10, no. 3, p. 227-238.

    Article  Google Scholar 

  • Watney, W. L., Guy, W. J., and Byrnes, A. P., 2001, Characterization of the Mississippian chat in south-central Kansas: Am. Assoc. Petroleum Geologists Bull., v. 85, no. 1, p. 85-113.

    Google Scholar 

  • Wheildon, J., Morgan, P., Williamson, K. H., Evans, T. R., and Swanberg, C. A., 1994, Heat flow in the Kenya rift zone: Tectonophysics, v. 236, no. 1-4, p. 131-149.

    Article  Google Scholar 

  • Wollenberg, H. A., and Smith, A. R., 1987, Radiogenic heat production of crustal rocks: An assessment based on geochemical data: Geophys. Res. Lett., v. 14, no. 3, p. 295-298.

    Google Scholar 

  • Zhou, S., 1996, A revised estimation of the steady-state geotherm for the continental lithosphere and its implication for mantle melting: Terra Nova, v. 8, no. 6, p. 514-524.

    Google Scholar 

  • Ziagos, J. P., and Blackwell, D. D., 1986, A model for the transient temperature effects of horizontal fluid flow in geothermal systems: J. Volcanol. Geothermal Res., v. 27, p. 371-397.

    Article  Google Scholar 

  • Zorin, Yu. A., 1989, Maximum thickness of the lithosphere and heat flow of continents: Tectonophysics, v. 164, no. 2/4, p. 117-120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waples, D.W. A New Model for Heat Flow in Extensional Basins: Estimating Radiogenic Heat Production. Natural Resources Research 11, 125–133 (2002). https://doi.org/10.1023/A:1015568119996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015568119996

Navigation