Skip to main content
Log in

NAD-dependent inhibition of the NAD-glycohydrolase activity in A549 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NAD glycohydrolases are enzymes that catalyze the hydrolisis of NAD to produce ADP-ribose and nicotinamide. Regulation of these enzymes has not been fully elucidated. We have identified an NAD-glycohydrolase activity associated with the outer surface of the plasma membrane in human lung epithelial cell line A549. This activity is negatively regulated by its substrate β-NAD but not by α-NAD. Partial restoration of NADase activity after incubation of the cells with arginine or histidine, known ADP-ribose acceptors, suggests that inhibition be regulated by ADP-ribosylation. A549 do not undergo to apoptosis upon NAD treatment indicating that this effect be likely mediated by a cellular component(s) lacking in epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ziegler M: New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem 269: 1550–1564, 2000

    Google Scholar 

  2. Dargie PJ, Agre MC, Lee HC: Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul 1: 279–290, 1990

    Google Scholar 

  3. Ueda K, Hayaishi O: ADP-ribosylation. Annu Rev Biochem 54: 73–100, 1985

    Google Scholar 

  4. Kharadia SV, Huiatt TW, Huang HY, Peterson JE, Graves DJ: Effect of an arginine-specific ADP-ribosyltransferase inhibitor on differentiation of embryonic chick skeletal muscle cells in culture. Exp Cell Res 201: 33–42, 1992

    Google Scholar 

  5. Tanuma S, Kanai Y: Poly(ADP-ribosyl)ation of chromosomal proteins in the HeLa S3 cell cycle. J Biol Chem 257: 6565–6570, 1982

    Google Scholar 

  6. Moss J, Vaughan M: ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol Relat Areas Mol Biol 61: 303–379, 1988

    Google Scholar 

  7. Moss J, Stanley SJ, Watkins PA: Isolation and properties of an NADand guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255: 5838–5840, 1980

    Google Scholar 

  8. Okazaki IJ, Kim H-J, Moss J: A novel membrane-bound lymphocyte ADPribosyltransferase cloned from Yac1 cells. J Biol Chem 271: 22052–22057, 1996

    Google Scholar 

  9. Okazaki IJ, Zolkiewska A, Nightingale MS, Moss J: Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry 33: 12828–12836, 1994

    Google Scholar 

  10. Okazaki IJ, Kim H-J, McElvaney G, Lesma E, Moss J: Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes. Blood 88: 915–921, 1996

    Google Scholar 

  11. Wang J, Nemoto E, Kots AY, Kaslow HR, Dennert G: Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI anchored/arginine ADP-ribosyltransferase. J Immunol 153: 4048–4058, 1994

    Google Scholar 

  12. Kaplan NO: Animal tissue DPNase (Pyridine Transglycosidase). Methods Enzymol II: 660–663, 1955

    Google Scholar 

  13. Swislocki NI, Kaplan NO: Purification and characterization of diphosphopyridine nucleosidase from pig brain. J Biol Chem 242: 1083–1088, 1967

    Google Scholar 

  14. Swislocki NI, Kalish MI, Chasalow FI, Kaplan NO: Solubilization and comparative properties of some mammalian diphosphopyridine nucleosidases. J Biol Chem 242: 1089–1094, 1967

    Google Scholar 

  15. Yost DA, Anderson BM: Purification and properties of the soluble NAD glycohydrolase from Bungarus fasciatus venom. J Biol Chem 256: 3647–3653, 1981

    Google Scholar 

  16. Yamauchi J, Tanuma S: Occurrence of an NAD+ glycohydrolase in bovine brain cytosol. Arch Biochem Biophys 308: 327–329, 1994

    Google Scholar 

  17. Matsumura N, Tanuma S: Involvement of cytosolic NAD+ glycohydrolase in cyclic ADP-ribose metabolism. Biochem Biophys Res Commun 253: 246–252, 1998

    Google Scholar 

  18. Kim U-H, Kim M-K, Kim J-S, Han M-K, Park B-H, Kim H-R: Purification and characterization of NAD-glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys 305: 147–152, 1993

    Google Scholar 

  19. Malavasi F, Caligaris-Cappio F, Milanese C, Dellabona P, Richiardi P, Carbonara AO: Characterization of a murine monoclonal antibody specific for human early lymphohemopoietic cells. Hum Immunol 9: 9–20, 1984

    Google Scholar 

  20. Ramaschi G, Torti M, Festetics ET, Sinigaglia F, Malavasi F, Balduini C: Expression of cyclic ADP-ribose-synthetizing CD38 molecule on human platelet membrane. Blood 87: 2308–2313, 1996

    Google Scholar 

  21. Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC, De Flora A: A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADPribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun 196: 1459–1465, 1993

    Google Scholar 

  22. Lee HC: Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev 7: 1133–1164, 1997

    Google Scholar 

  23. Lieberman I: The mechanism of the specific depression of an enzyme activity in cells in tissue culture. J Biol Chem 225: 883–898, 1957

    Google Scholar 

  24. Han M-K, Lee J-Y, Cho Y-S, Song YM, An N-H, Kim H-R, Kim UH: Regulation of NAD-glycohydrolase activity by NAD+ dependent auto-ADP-ribosylation. Biochem J 318: 903–908, 1996

    Google Scholar 

  25. Green S, Dobrjansky A: pH dependent inactivation of nicotinamideadenine dinucleotide glycohydrolase by its substrate, oxidized nicotinamide-adenine dinucleotide. Biochemistry 19: 2496–2500, 1971

    Google Scholar 

  26. Pekala PH, Yost DA, Anderson BM: Self-inactivation of an erythrocyte NAD-glycohydrolase. Mol Cell Biochem 31: 49–56, 1980

    Google Scholar 

  27. Anderson BM, Yost DA: Studies of self-inactivation of bovine seminal fluid NAD-glycohydrolase. Chem Biol Interact 54: 159–170, 1985

    Google Scholar 

  28. Weng B, Thompson WC, Kim H-J, Levine RL, Moss J: Modification of the ADP-ribosyltransferase and NAD glycohydrolase activities of a mammalian transferase (ADP-ribosyltransferase 5) by auto-ADPribosylation. J Biol Chem 274: 31797–31803, 1999

    Google Scholar 

  29. Moss J, Stanley SJ: Amino acid-specific ADP-ribosylation. Identification of an arginine-dependent ADP-ribosyltransferase in rat liver. J Biol Chem 256: 7830–7833, 1981

    Google Scholar 

  30. Lee H, Iglewski WJ: Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin. Proc Natl Acad Sci USA 81: 2703–2707, 1984

    Google Scholar 

  31. Han MK, Cho YS, Kim YS, Yim CY, Kim UH: Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J Biol Chem 275: 20799–20805, 2000

    Google Scholar 

  32. Liu ZX, Azhipa O, Okamoto S, Govindarajan S, Dennert: Extracellular nicotinamide adenine dinucleotide induces T cell apoptosis in vivo and in vitro. J Immunol 167: 4942–4947, 2001

    Google Scholar 

  33. Adriouch S, Ohlrogge W, Haag F, Koch-Nolte F, Seman M: Rapid induction of naive T cell apoptosis by ecto-nicotinamide adenine dinucleotide: Requirement for mono(ADP-ribosyl)transferase 2 and a downstream effector. J Immunol 167: 196–203, 2001

    Google Scholar 

  34. Barrio JR, Secrist JA 3rd, Leonard NJ: A fluorescent analog of nicotinamide adenine dinucleotide. Proc Natl Acad Sci USA 69: 2039–2042, 1972

    Google Scholar 

  35. Graeff RM, Walseth TF, Fryxell K, Branton WD, Lee HC: Enzymatic synthesis and characterization of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem 269: 30260–30267, 1994

    Google Scholar 

  36. Kukimoto I, Hoshino S-I, Kontani K, Inageda K, Nishina H, Takahashi K, Katada T: Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD+ glycohydrolase activity. Eur J Biochem 239: 177–182, 1996

    Google Scholar 

  37. Balducci E, Horiba K, Usuki J, Park M, Ferrans VJ, Moss J: Selective expression of RT6 superfamily in human bronchial epithelial cells. Am J Respir Cell Mol Biol 21: 337–339, 1999

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balducci, E., Micossi, L.G. NAD-dependent inhibition of the NAD-glycohydrolase activity in A549 cells. Mol Cell Biochem 233, 127–132 (2002). https://doi.org/10.1023/A:1015562412828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015562412828

Navigation