Skip to main content
Log in

An Arabidopsis callose synthase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

β-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic β-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant β-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce β-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast β-1,3-glucan synthase whose expression partially complements a yeast β-1,3-glucan synthase mutant. AtGsl5 is developmentally expressed at highest levels in flowers, consistent with flowers having high β-1,3-glucan synthase activities for deposition of callose in pollen. A role for AtGsl5 in callose synthesis is also indicated by AtGsl5expression in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated β-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5mRNA accumulation is induced by SA in wild-type plants, while expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H., Plazinsky, J., Birch, R., Cork, A., Glover, J., Redmond, J., and Williamson, R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Blanton, R.L. and Northcote, D.H. 1990. A 1,4-?-D-glucan synthase system from Dictyostelium discoideum. Planta 180: 324–332.

    Google Scholar 

  • Brown, I., Trethowan, J., Kerry, M., Mansfield, J., and Bolwell, G.P. 1998. Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains of Xanthomonas campestris and French bean mesophyll cells. Plant J. 15: 333–343.

    Google Scholar 

  • Cui, X., Shin, H., Song, C., Laosinchai, W., Amano, Y., and Brown, R.M. Jr. 2001. A putative plant homolog of the yeast ß-1,3-glucan synthase subunit FKS1 from cotton (Gossy hirsutum L.) fibers. Planta 213: 223–230.

    Google Scholar 

  • Curie, C., Alonso, J.M., Le Jean, M., Ecker, J.R. and Briat, J.-F. 2000. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem. J. 347: 749–755.

    Google Scholar 

  • Delley, P.-A. and Hall, M. 1999. Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol. 147: 163–174.

    Google Scholar 

  • Delmer, D.P. 1987. Cellulose biosynthesis. Annu. Rev. Plant Physiol. 38: 259–290.

    Google Scholar 

  • Delmer, D.P. 1999. Cellulose biosynthesis: Exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245–276.

    Google Scholar 

  • Delmer, D.P. and Amor, Y. 1995. Cellulose biosynthesis. Plant Cell 7: 987–1000.

    Google Scholar 

  • Dhugga, K.S. and Ray, P.M. 1994. Purification of 1,3-?-glucan synthase activity from pea tissue: two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. Eur. J. Biochem. 220: 943–953.

    Google Scholar 

  • Doblin, M.S., De Melis, L., Newbigin, E., Bacic, A. and Read, S.M. 2001. Pollen tubes of Nicotiana alata express two genes from different ?-glucan synthase families. Plant Physiol. 125: 2040–2052.

    Google Scholar 

  • Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316–323.

    Google Scholar 

  • Donofrio, N.M. and Delaney, T.P. 2001. Abnormal callose response phenotype and hypersusceptibility to Peronospora parasitica in defence-compromised arabidopsis nim1-1 and salicylate hydroxylase-expressing plants. Mol. Plant-Microbe Interact. 14: 439–450.

    Google Scholar 

  • Douglas, C.M., Foor, F., Marrinan, J.A., Morin, N., Nielsen, J.B., Dahl, A.M., Mazur, P., Baginsky, W., Li, W., El-Sherbeini, M., Clemas, J.A., Mandala, S.M., Frommer, B.R. and Kurtz, M.B. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-?-D-glucan synthase. Proc. Natl. Acad. Sci. USA 91: 12907–12911.

    Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756.

    Google Scholar 

  • Gietz, D., St Jean, A., Woods, R.A. and Schiestl, R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 25: 1425.

    Google Scholar 

  • Glazebrook, J. 1999. Genes controlling expression of defense responses in Arabidopsis. Curr. Opin. Plant Biol. 2: 280–286.

    Google Scholar 

  • Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouze, P. and Brunak, S. 1996. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl. Acids Res. 24: 3439–3452.

    Google Scholar 

  • Hofmann, K. and Stoffel, W. 1993. Tmbase: a database of membrane spanning protein segments. Biol. Chem. Hoppe-Seyler 347: 166.

    Google Scholar 

  • Hong, Z., Delauney, A.J., and Verma, D.P.S. 2001. A cell-platespecific callose synthase and its interaction with pragmoplastin. Plant Cell. 13: 755–768.

    Google Scholar 

  • Inoue, S.B., Qadota, H., Arisawa, M., Anraku, Y., Watanabe, T. and Ohya, Y. 1996. Signaling toward yeast 1,3-?-glucan synthesis. Cell Struct. Funct. 21: 395–402.

    Google Scholar 

  • Jacob, S.R. and Northcote, D. 1985. In vitro glucan synthesis by membranes of celery petioles: the role of the membrane in determining the type of linkage formed. J. Cell. Sci. Suppl. 2: 1–11.

    Google Scholar 

  • Kauss, H. 1987. Some aspects of calcium-dependent regulation in plant metabolism. Annu. Rev. Plant Physiol. 38: 47–72.

    Google Scholar 

  • Kudlicka, K. and Brown, R.M. Jr. 1997. Cellulose and callose biosynthesis in higher plants. I. Solubilization and separation of (1?3)-and (1?4)-?-glucan synthase activities from mung bean. Plant Physiol. 115: 643–656.

    Google Scholar 

  • Mazur, P., Morin, N., Baginsky, W., El-Sherbeini, M., Clemas, J.A., Nielsen, J.B. and Foor, F. 1995. Differential expression and function of two homologous subunits of yeast 1,3-?-D-glucan synthase. Mol. Cell. Biol. 15: 5671–5681.

    Google Scholar 

  • McCormack, B.A., Gregory, A.C.E., Kerry, M.E., Smith, C. and Bolwell, G.P. 1997. Purification of an elicitor-induced glucan synthase (callose synthase) from suspension cultures of French bean (Phaseolus vulgaris L.): purification and immunolocation of a probable Mr-65000 subunit of the enzyme. Planta 203: 196–203.

    Google Scholar 

  • Mumberg, D., Müller, R. and Funk, M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119–122.

    Google Scholar 

  • Parent, S.A., Nielsen, J.B., Morin, N., Chrebet, G., Ramadan, N., Dahl, A.M., Hsu, M.-J., Bostian, K.A. and Foor, F. 1993. Calcineurin-dependent growth of an FK506-and CsA-hypersensitive mutant of Saccharomyces cerevisiae. J. Gen. Microbiol. 139: 2973–2984.

    Google Scholar 

  • Pedersen, A.G. and Nielsen, H. 1997. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. ISMB 5: 226–233.

    Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen, R., Mattsson, O., Jensen, A.B. and Mundy J. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111–1120.

    Google Scholar 

  • Piao, H.L., Pih, K.T., Lim, J.H., Kang, S.G., Jin, J.B., Kim, S.H. and Hwang, I. 1999. An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol. 119: 1527–1534.

    Google Scholar 

  • Robertson, D., McCormack, B.A. and Bolwell, G.P. 1995. Cell wall polysaccharide biosynthesis and related metabolism in elicitor-stressed cells of French bean (Phaseolus vulgaris L.). Biochem. J. 306: 745–750.

    Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y. and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8: 1809–1819.

    Google Scholar 

  • Saxena, I.M., Brown, R.M., Fevre, M., Geremi, R. and Henrissat, B. 1995. Multidomain architecture of ?-glycosyl transferases: implications for mechanism of action. J. Bact. 117: 1419–1404.

    Google Scholar 

  • Schlupmann, H., Bacic, A. and Read, S.M. 1993. A novel callose synthase from pollen tubes of Nicotiana. Planta 191: 470–481.

    Google Scholar 

  • Turner, A., Bacic, A., Harris, P.J. and Read, S. M. 1998. Menbrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta 205: 380–388.

    Google Scholar 

  • Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J. and McCormick, S. 1991. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 5: 496–507.

    Google Scholar 

  • von Arnim, A.G., Deng, X.-W. and Stacey, M.G. 1998. Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene 221: 35–43.

    Google Scholar 

  • Wilkinson, J., Twell, D. and Lindsey, K. 1997. Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J. Exp. Bot. 48: 265–275.

    Google Scholar 

  • Zhao, C., Jung, U.S., Garrett-Engele, P., Roe, T., Cyert, M.S. and Levin, D.E. 1998. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell. Biol. 18: 1013–1022.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Østergaard, L., Petersen, M., Mattsson, O. et al. An Arabidopsis callose synthase. Plant Mol Biol 49, 559–566 (2002). https://doi.org/10.1023/A:1015558231400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015558231400

Navigation