Journal of Electroceramics

, Volume 8, Issue 1, pp 37–48 | Cite as

Microstructural, Dielectric, Pyroelectric and Ferroelectric Studies on Partially Grain-Oriented SrBi2Ta2O9 Ceramics

Article

Abstract

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (εrnrp) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be −23 μC/m2K and −71 μC/m2K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

electroceramics grain-orientation strontium bismuth tantalate scanning electron microscopy dielectric hysteresis loop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Scott and C.A. Paz de Araujo, Science, 246, 1400 (1989).Google Scholar
  2. 2.
    G.H. Haertling, J. Vac. Sci. Technol., 9, 414 (1990).Google Scholar
  3. 3.
    J.J. Lee, C.L. Thio, and S.B. Desu, J. Appl. Phys., 78, 5073(1995).Google Scholar
  4. 4.
    S. Dey and R. Zuleeg, Ferroelectrics, 108, 37 (1990).Google Scholar
  5. 5.
    H.N. Al-shareef, A.I. Kingon, X. Chen, K.R. Bellur, and O. Auciello, J. Mater. Res., 9, 2986 (1994).Google Scholar
  6. 6.
    W.L. Warren, D. Dimos, B.A. Tuttle, R.D. Nasby, and G.E. Pike, Appl. Phys. Lett., 65, 1018 (1994).Google Scholar
  7. 7.
    J.F. Chang and S.B. Desu, J. Mater. Res., 9, 955 (1994).Google Scholar
  8. 8.
    K. Amanuma, T. Hase, and Y. Miyasaka,Jpn. J. Appl. Phys., 33, 5211 (1994).Google Scholar
  9. 9.
    P.C. Joshi and S.B. Krupanidhi, J. Appl. Phys., 72, 5827 (1992).Google Scholar
  10. 10.
    B. Aurivillius, Ark. Kemi, 1, 463 (1949).Google Scholar
  11. 11.
    G.A. Smolenskii, V.A. Isupov, and A.I. Agranovskya, Sov. Phys. Solid State, 3, 651 (1961).Google Scholar
  12. 12.
    E.C. Subbarao, J. Phys. Chem. Solids, 23, 665 (1962).Google Scholar
  13. 13.
    C.A. Paz de Araujo, J.D. Cuchlaro, M.C. Scott, L.D. Mcmillan, and J.F. Scott, Nature, 374, 627 (1995).Google Scholar
  14. 14.
    S.B. Desu and T.K. Li, Mater. Sci. Engg. B,34, L4 (1995).Google Scholar
  15. 15.
    S.B. Desu and D.P. Vijay, Mater. Sci. Engg. B, 32, 75 (1995).Google Scholar
  16. 16.
    R. Dat, J.K. Lee, O. Auciello, and A.I. Kingon, Appl. Phys. Lett., 67, 572 (1995).Google Scholar
  17. 17.
    T. Li, Y. Zhu, S.B. Desu, C.H. Peng, and M. Nagata, Appl. Phys. Lett, 68, 616 (1995).Google Scholar
  18. 18.
    T.C. Chen, C.L. Thio, and S.B. Desu, J. Mater. Res., 12, 2628(1997) and references therein.Google Scholar
  19. 19.
    J.S. Yang and X.M. Chen, Mater. Lett., 29, 73 (1996).Google Scholar
  20. 20.
    S.E. Cummins and L.E. Cross, Appl. Phys. Lett., 10, 14 (1967); J. Appl. Phys., 39, 2268 (1968).Google Scholar
  21. 21.
    T. Takenaka, K. Shoji, H. Takai, and K. Sakata, in Proc. Jap. Cong. Materials Research, Tokyo (1975), p.230, (1976), p. 212.Google Scholar
  22. 22.
    K. Sakata, T. Takenaka, and K. Shoji, Ferroelectrics, 22, 825(1978).Google Scholar
  23. 23.
    T. Takenaka and K. Sakata, in Proc. First Meeting on Ferroelectric Materials and Their Applications, Kyoto (1977), p. 309.Google Scholar
  24. 24.
    T. Kimura, M.H. Holmes, and R.E. Newnham, J. Am. Ceram. Soc., 65, 223 (1982).Google Scholar
  25. 25.
    M. Granahan, M. Holmes, W.A. Schulze, and R.E. Newnham, J. Am. Ceram. Soc., 64, C68 (1981).Google Scholar
  26. 26.
    A. Halliyal, A.S. Bhalla, and R.E. Newnham, Mater. Res. Bull., 18, 1007 (1983).Google Scholar
  27. 27.
    A. Halliyal, A.S. Bhalla, R.E. Newnham, and L.E. Cross, Ferroelectrics, 38, 781 (1981).Google Scholar
  28. 28.
    A. Halliyal, A. Safari, A.S. Bhalla, R.E. Newnham, and L.E. Cross, J. Am. Ceram. Soc., 67, 331 (1984).Google Scholar
  29. 29.
    G. Senthil Murugan, K.B.R. Varma, Y. Takahashi, and T. Komatsu, Appl. Phys. Lett., 78, 4019 (2001).Google Scholar
  30. 30.
    F.K. Lotgering, J. Inorg. Nucl. Chem., 9, 113 (1959).Google Scholar
  31. 31.
    A. David Rae, J.G. Thompson, and R.L. Withers, Acta Cryst. B, 48, 418 (1992).Google Scholar
  32. 32.
    C.B. Sawyer and C.H. Tower, Phys. Rev., 35, 269 (1930).Google Scholar
  33. 33.
    R.L. Byer and C.B. Roundy, Ferroelectrics, 3, 333 (1972).Google Scholar
  34. 34.
    V.N. Sigaev, E.V. Lopatina, P.D. Sarkisov, S. Yu. Stefanovich, and V.I. Molev, Mater. Sci. Engg. B,48, 254 (1997).Google Scholar
  35. 35.
    K. Shantha and K.B.R. Varma, Mater. Res. Bull., 32, 1581 (1997).Google Scholar
  36. 36.
    C.H. Lu and B.K. Fang, J. Mater. Res., 13, 2262 (1998).Google Scholar
  37. 37.
    W. Buessem, L.E. Cross, and A.K. Goswami, J. Am. Ceram. Soc., 49, 34 (1966).Google Scholar
  38. 38.
    G. Haertling, Am. Ceram. Soc. Bull., 45, 1084 (1966).Google Scholar
  39. 39.
    K. Shoji, M. Aikawa, Y. Uehara, and K. Sakata, Jpn. J. Appl. Phys., 37, 5273 (1998).Google Scholar
  40. 40.
    H. Frolich, Theory of Dielectrics (Clarendon Press, Oxford, 1949).Google Scholar
  41. 41.
    K. Lichtenecker, Phys. Zeitsch., 27, 115 (1926).Google Scholar
  42. 42.
    N. Wiener, Phys. Zeitsch., 5, 332 (1904).Google Scholar
  43. 43.
    N. Wiener, Leipzig Ber., 61, 113 (1909).Google Scholar
  44. 44.
    F.A. Diaz and L.E. Cross, Ferroelectrics, 17, 405 (1977).Google Scholar
  45. 45.
    F. Micheron, Revue Technique Thomson-CSF, 4,5 (1972).Google Scholar
  46. 46.
    J.F. Berton and B. Roelandt, Bull. Soc. Fr. Ceram., 94, 51 (1972).Google Scholar
  47. 47.
    T. Takenaka and K. Sakata, Ferroelectrics, 118, 123 (1991).Google Scholar
  48. 48.
    A.S. Bhalla and R.E. Newnham, Phys. Stat. Sol. (a), 58, K19(1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations