Skip to main content
Log in

A novel pollen-specific α-tubulin in sunflower: structure and characterization

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We describe here a new α-tubulin isoform from sunflower we named απ-tubulin. απ-tubulin is the most divergent higher-plant α-tubulin described so far, having an unusual deletion in the H1/B2 loop and a glutamine-rich C-terminus. We constructed a three-dimensional model and discuss its implications. Using specific antibodies, we show that απ-tubulin expression is restricted to the male gametophyte. απ-tubulin mRNA represents 90% of α-tubulin mRNA and a small percentage of total pollen mRNA. Among the plants tested, απ-tubulin was only detected in sunflower and in Cosmos. Since both plants are Asteraceae, we propose that απ-tubulin is specific to this family. Our results suggest that απ-tubulin can inhibit tubulin assembly in pollen. This hypothesis is reinforced by the fact that απ-tubulin is found in a complex with β-tubulin in mature sunflower pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azimzadeh, J., Traas, J. and Pastuglia, M. 2001. Molecular aspects of microtubule dynamics in plants. Curr. Opin. Plant Biol. 4: 513–519.

    Google Scholar 

  • Bao, Y., Kost, B. and Chua, N.H. 2001. Reduced expression of ?-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J. 28: 145–157.

    Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. 2000. The Protein Data Bank. Nucl. Acids Res. 28: 235–242.

    Google Scholar 

  • Bichet, A., Desnos, T., Turner, S., Grandjean, O. and Höfte, H. 2001. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J. 25: 137–148.

    Google Scholar 

  • Canaday, J., Stoppin-Mellet, V., Mutterer, J., Lambert, A.M. and Schmit, A.C. 2000. Higher plant cells: ?-tubulin andmicrotubule nucleation in the absence of centrosomes. Microsc. Res. Tech. 49: 487–495.

    Google Scholar 

  • Carpenter, J.L., Ploense, S.E., Snustad, D.P. and Silflow, C.D. 1992. Preferential expression of an ?-tubulin gene of Arabidopsis in pollen. Plant Cell 4: 557–571.

    Google Scholar 

  • Carpenter, J.L., Kopczak, S.D., Snustad, D.P. and Silflow, C.D. 1993. Semi-constitutive expression of an Arabidopsis thaliana ?-tubulin gene. Plant Mol. Biol. 21: 937–942.

    Google Scholar 

  • Cyr, R.J. and Palevitz, B.A. 1995. Organization of cortical microtubules in plant cells. Curr. Opin. Cell Biol. 7: 65–71.

    Google Scholar 

  • Derksen, J., Pierson, E.S. and Traas, J.A. 1985. Microtubules in vegetative and generative cells of pollen tubes. Eur. J. Cell Biol. 38: 142–148.

    Google Scholar 

  • Dutcher, S.K. 2001. The tubulin fraternity: alpha to eta. Curr. Opin. Cell Biol. 13: 49–54.

    Google Scholar 

  • Endlé, M.C., Stoppin, V., Lambert, A.M. and Schmit, A.C. 1998. The growing cell plate of higher plants is a site of both actin assembly and vinculin-like antigen recruitment. Eur. J. Cell Biol. 77: 10–18.

    Google Scholar 

  • Feng, Y., Hodge, D.R., Palmieri, G., Chase, D.L., Longo, D.L. and Ferris, D.K. 1999. Association of polo-like kinase with ?-, ?-and ?-tubulins in a stable complex. Biochem. J. 339: 435–442.

    Google Scholar 

  • Fosket, D.E. and Morejohn, L.C. 1992. Structural and functional organization of tubulin. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 201–240.

    Google Scholar 

  • Geissler, S., Siegers, K. and Schiebel, E. 1998. A novel protein complex promoting formation of functionnal ? and ? tubulin. EMBO J. 17: 952–966.

    Google Scholar 

  • Heese, M., Mayer, U. and Jürgens, G. 1998. Cytokinesis in flowering plants: cellular process and developmental integration. Curr. Opin. Plant Biol. 1: 486–491.

    Google Scholar 

  • Heslop-Harrison, J., Heslop-Harrison, Y., Cresti, M., Tiezzi, A. and Moscatelli, A. 1988. Cytoskeletal elements, cell shaping and movement in the angiosperm pollen-tube. J. Cell Sci. 91: 49–60.

    Google Scholar 

  • Keating, T.J. and Borisy, G.G. 2000. Immunostructural evidence for the template mechanism of microtubule nucleation. Nature Cell Biol. 2: 352–357.

    Google Scholar 

  • Kopczak, S.D., Haas, N.A., Hussey, P.J., Silflow, C.D. and Snustad, D.P. 1992. The small genome of Arabidopsis contains at least six expressed ?-tubulin genes. Plant Cell 4: 539–547.

    Google Scholar 

  • Kost, B., Mathur, J. and Chua, N.M. 1999. Cytoskeleton in plant development. Curr. Opin. Plant Biol. 2: 462–470.

    Google Scholar 

  • Mascarenhas, J.P. 1990. Gene activity during pollen development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 317–338.

    Google Scholar 

  • Meurer-Grob, P., Kasparian, J. and Wade, R.H. 2001. Microtubule structure at improved resolution. Biochemistry 40: 8000–8008.

    Google Scholar 

  • Moritz, M. and Agard, D.A. 2001. ?-Tubulin complexes and microtubule nucleation. Curr. Opin. Struct. Biol. 11: 174–181.

    Google Scholar 

  • Nogales, E. 1999. A structural view of microtubule dynamics. Cell Mol. Life Sci. 56: 133–142.

    Google Scholar 

  • Nogales, E., Wolf, S. G. and Downing, K. H. 1998. Structure of the ?? tubulin dimer by electron crystallography. Nature 391: 199–203.

    Google Scholar 

  • Nogales, E., Whittaker, M., Milligan, R.A. and Downing, K.H. 1999. High-resolution model of the microtubule. Cell 96: 79–88.

    Google Scholar 

  • Pierson, E.S. and Cresti, M. 1992. Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int. Rev. Cytol. 140: 73–125.

    Google Scholar 

  • Pratt, L.F., Okamura, S. and Cleveland, D.W. 1987. A divergent testis-specific ?-tubulin isotype that does not contain a coded Cterminal tyrosine. Mol. Cell Biol. 7: 552–555.

    Google Scholar 

  • Sali A. and Blundell T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234: 779–815.

    Google Scholar 

  • Smith, L.G. 1999. Divide and conquer: cytokinesis in plant cells. Curr. Opin. Plant Biol. 2: 447–453.

    Google Scholar 

  • Snustad, D.P., Haas, N.A., Kopczak, S.D. and Silflow, C.D. 1992. The small genome of Arabidopsis contains at least nine expressed ?-tubulin genes. Plant Cell. 4: 549–556.

    Google Scholar 

  • Stoppin-Mellet, V., Peter, C. and Lambert, A.M. 2000. Distribution of ?-tubulin in higher plant cells: cytosolic ?-tubulin is part of high molecular weight complexes. Plant Biol. 2: 290–296.

    Google Scholar 

  • Taylor, P.E.. and Hepler, P.K. 1997. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 461–491.

    Google Scholar 

  • Tiwari, S.C. and Polito, V.S. 1988. Spatial and temporal organization of actin during hydration, activation, and germination of pollen in Pyrus communis L. A. Protoplasma 147: 5–15.

    Google Scholar 

  • Vantard, M., Stoppin, V. and Lambert, A.M. 1998. Cell cycle dependent nucleation and assembly of plant microtubular proteins. In: D. Francis, D. Dudits and D. Enzi (Eds.) Plant Cell Division, Portland Press, pp. 301-318.

  • Wick, S. 2000. Plant microtubules meet their MAPs and mimics. Nature Cell Biol. 2: 204–206.

    Google Scholar 

  • Wilson, P.G. and Borisy G.G. 1997. Evolution of the multi-tubulin hypothesis. BioEssays 19: 451–454.

    Google Scholar 

  • Wymer, C. and Lloyd, C. 1996. Dynamic microtubules: implications for cell wall patterns. Trends Plant Sci. 1: 222–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evrard, JL., Nguyen, I., Bergdoll, M. et al. A novel pollen-specific α-tubulin in sunflower: structure and characterization. Plant Mol Biol 49, 611–620 (2002). https://doi.org/10.1023/A:1015545916961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015545916961

Navigation