Skip to main content
Log in

In situ biofiltration: a means to limit the dispersal of effluents from marine finfish cage aquaculture

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Net pen fish farms generally enrich the surrounding waters and the underlying sediments with nutrients and organic matter, and these loadings can cause a variety of environmental problems, such as algal blooms and sediment anoxia. In this study we test the potential of biofiltration by artificial reefs for reducing the negative environmental impacts surrounding fish farms in the Gulf of Aqaba, Red Sea. Two triangular-shaped artificial reefs (reef volume 8.2 m3) constructed from porous durable polyethylene were deployed at 20 m; one below a commercial fish farm and the other 500 m west of this farm in order to monitor the colonization of these reefs by the local fauna and to determine whether the reef community can remove fish farm effluents from the water. Both reefs became rapidly colonized by a wide variety of organisms with potential for the removal of compounds released from the farms. Within the first year of this study fish abundances and the number of species reached 518–1185 individuals per reef and 25–42 species per reef. Moreover, numerous benthic algae; small sessile invertebrates (bryozoa, tunicates, bivalves, polychaetes, sponges, anemones) and large motile macrofauna (crustaceans, sea urchins, gastropods) settled on the reef surfaces. Depletion of chlorophyll a was measured in the water traversing the artificial reefs in order to assess the biofiltration capacity of the associated fauna. Chlorophyll a was significantly reduced to a level 15–35% lower than ambient concentrations. This reduction was greatest at intermediate current speeds (3–10 cm s−1), but was not influenced by current direction. The reef structures served as a successful base for colonization by natural fauna and flora, thereby boosting the local benthic biodiversity, and also served as effective biofilters of phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angel, D. L., P. Krost & H. Gordin, 1995. Benthic implications of net cage aquaculture in the oligotrophic Gulf of Aqaba. Eur. Aquacult. Soc. Spec. Publ. 25: 129–173.

    Google Scholar 

  • Angel, D. L., A. Post, S. Brenner, N. Eden, T. Katz, A. Cicelsky & I. Lupatsch, 1998. Environmental impact assessment of the Ardag net cage fish farm on the northern Gulf of Aqaba. A report prepared for the Ardag Fish Company, Israel: 95 pp. (in Hebrew).

    Google Scholar 

  • Angel, D. L., S. Verghese, J. J. Lee, A. M. Saleh, D. Zuber, D. Lindell & A. Symons, 2000. Impact of a net cage fish farm on the distribution of benthic foraminifera in the northern Gulf of Eilat (Aqaba, Red Sea). J. Foram. Res. 30: 54–65.

    Google Scholar 

  • Barnes, R. D., 1980. Invertebrate Zoology. 4th edn. Saunders College, Philadelphia: 1089 pp.

    Google Scholar 

  • Beveridge, M. C. M. 1996. Cage Aquaculture. 2nd edn. Fishing News Books, Oxford: 346 pp.

    Google Scholar 

  • Black, K. B., 1998. The environmental interactions associated with fish culture. In Black, K. D. & A. D. Pickering (eds), Biology of Farmed Fish. Publ, CRC Press, New York: 284–326.

    Google Scholar 

  • Brenner, S., Z. Rosentroub & Y. Bishop, 1988. Current measurements in the Gulf of Elat. Israel Oceanographic & Limnological Research (IOLR) Report H3/88: 38 pp.

  • Brenner, S., Z. Rosentroub & Y. Bishop, 1989. Current measurements in the Gulf of Elat 1988/89. IOLR Report H8/89: 31 pp.

  • Chopin, T. & C. Yarish, 1998. Nutrients or not nutrients? World Aquacult. 29: 31–36.

    Google Scholar 

  • Enell, M., 1995. Environmental impact of nutrients from Nordic fish farming. Water Sci. Technol. 31: 61–71.

    Google Scholar 

  • Fishelson, L., 1971. Ecology and distribution of the benthic fauna in the shallow waters of the Red Sea. Mar. Biol. 10: 113–130.

    Google Scholar 

  • Folke, C. & N. Kautsky, 1989. The role of ecosystems for a sustainable development of aquaculture. Ambio 18: 234–243.

    Google Scholar 

  • Genin, A., G. Gal & L. Haury, 1995. Copepod carcasses in the ocean. II. Near coral reefs. Mar. Ecol. Prog. Ser. 123: 65–71.

    Google Scholar 

  • Glynn, P. W., 1973. Ecology of a Caribbean coral reef. The Porites reef-flat biotop: Part II. Plankton community with evidence for depletion. Mar. Biol. 22: 1–21.

    Google Scholar 

  • Golani, D. & A. Diamant, 1999. Fish colonization of an artificial reef in the Gulf of Elat, northern Red Sea. Envir. Biol. Fish. 54: 275–282.

    Google Scholar 

  • Gowen, R. J. & N. B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogr. mar. biol. Ann. Rev. 25: 563–575.

    Google Scholar 

  • Gowen, R. J., D. P. Weston & A. Ervik, 1991. Aquaculture and the benthic environment: a review. In Cowey, C. B. & C. Y. Cho (eds), Nutritional Strategies and Aquaculture Waste. University of Guelph Press, Guelph, Canada: 187–205.

    Google Scholar 

  • Greene, L. E. & W. S. Alevison, 1989. Comparative accuracies of visual assessment methods for coral reef fishes. Bull. mar. Sci. 44: 988–912.

    Google Scholar 

  • Hamner, W. M., M. S. Jones, J. H. Carleton, I. R. Hauri & D. McB. Williams, 1988. Zooplankton, planktivorous fish and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. mar. Sci. 42: 459–479.

    Google Scholar 

  • Handy, R. D. & M. G. Poxton, 1993. Nitrogen pollution in mariculture — toxicity and excretion of nitrogenous compounds by marine fish. Rev. Fish Biol. Fisheries 3: 205–241.

    Google Scholar 

  • Holmer, M. & E. Kristensen, 1992. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser. 80: 191–201.

    Google Scholar 

  • Kiflawi, M. & A. Genin, 1997. Prey flux manipulation and the feeding rates of reef-dwelling planktivorous fish. Ecology 78: 1062–1077.

    Google Scholar 

  • Laihonen, P., J. Hännunen, J. Chojnacki & I. Vuorinen, 1996. Some prospects of nutrient removal with artificial reefs. In Jensen, A. C. (ed.), Proceedings of the 1st EARRN (European Artificial Reef Research Network). Ancona, Italy: 85–96.

  • Lupatch I. & G. W. Kissil, 1998. Predicting aquaculture waste from gilthead seabream (Sparus aurata) culture using a nutritional approach. Aquat. Living Resour. 11: 265–268.

    Google Scholar 

  • Manahan, D., 1990. Adaptations by invertebrate larvae for nutrient acquisition from seawater. Am. Zool. 30: 147–160.

    Google Scholar 

  • Manahan, D., S. H. Wright, G. C. Stevens & M. A. Rice, 1982. Transport of dissolved amino acides by the mussel, Mytilus edulis: demonstration of net uptake from natural seawater. Science 215: 1253–1255.

    Google Scholar 

  • Naylor, R. L., R. J. Goldburg, J. H. Primavera, N. Kautsky, M. C. M. Beveridge, J. Clay, C. Folke, J. Lubchenco, H. Mooney & M. Troell, 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024.

    Google Scholar 

  • Parsons, T. R., M. Takahashi & B. Hargrave, 1977. Biological Oceanographic Processes. Pergamon Press, N.Y.: 332 pp.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C.M. Lalli, 1985. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, N.Y.: 173 pp.

    Google Scholar 

  • Reiss Z. & L. Hottinger, 1984. The Gulf of Aqaba: Ecological Micropaleontology, Springer-Verlag, Berlin: 354 pp.

    Google Scholar 

  • Reiswig, H. M., 1985. In situ feeding in two shallow-water hexactinellid sponges. In Rutzler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington, DC: 504–510.

    Google Scholar 

  • Salmon Aquaculture Review, 1998. Environmental Assessment Office, British Columbia, Canada: 1500 pp.

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol. Oceanogr. 39: 1985–1992.

    Google Scholar 

  • Weston, D. P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar. Ecol. Prog. Ser. 61: 233–24.

    Google Scholar 

  • Yahel, G., A. F. Post, K. Fabricius, M. Dominique, D. Vaulot & A. Genin, 1998. Phytoplankton distribution and grazing near coral reefs. Limnol. Oceanogr. 43: 551–563.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angel, D.L., Eden, N., Breitstein, S. et al. In situ biofiltration: a means to limit the dispersal of effluents from marine finfish cage aquaculture. Hydrobiologia 469, 1–10 (2002). https://doi.org/10.1023/A:1015531812259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015531812259

Navigation