Skip to main content
Log in

The Magnetic Helicity Injected by Shearing Motions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Photospheric shearing motions are one of the possible ways to inject magnetic helicity into the corona. We explore their efficiency as a function of their particular properties and those of the magnetic field configuration. Based on the work of M. A. Berger, we separate the helicity injection into two terms: twist and writhe. For shearing motions concentrated between the centers of two magnetic polarities the helicity injected by twist and writhe add up, while for spatially more extended shearing motions, such as differential rotation, twist and writhe helicity have opposite signs and partially cancel. This implies that the amount of injected helicity can change in sign with time even if the shear velocity is time independent. We confirm the amount of helicity injected by differential rotation in a bipole in the two particular cases studied by DeVore (2000), and further explore the parameter space on which this injection depends. For a given latitude, tilt and magnetic flux, the generation of helicity is slightly more efficient in young active regions than in decayed ones (up to a factor 2). The helicity injection is mostly affected by the tilt of the AR with respect to the solar equator. The total helicity injected by shearing motions, with both spatial and temporal coherence, is at most equivalent to that of a twisted flux tube having the same magnetic flux and a number of turns of 0.3. In the solar case, where the motions have not such global coherence, the injection of helicity is expected to be much smaller, while for differential rotation this maximum value reduces to 0.2 turns. We conclude that shearing motions are a relatively inefficient way to bring magnetic helicity into the corona (compared to the helicity carried by a significantly twisted flux tube).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berger, M. A.: 1984, Geophys. Astrophys. Fluid. Dyn. 30, 79.

    Google Scholar 

  • Berger, M. A.: 1986, Geophys. Astrophys. Fluid. Dyn. 34, 265.

    Google Scholar 

  • Berger, M. A.: 1988, Astron. Astrophys. 201, 355.

    Google Scholar 

  • Berger, M. A. and Field, G. B.: 1984, J. Fluid. Mech 147, 133.

    Google Scholar 

  • Berger, M. A. and Ruzmaikin, A.: 2000, J. Geophys. Res. 105, 10481.

    Google Scholar 

  • Biskamp, D.: 1993, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Canfield, R. C., Hudson, H. S. and, McKenzie, D. E.: 1999, Geophys. Res. Lett. 26, 627.

    Google Scholar 

  • Chae, J.: 2001, Astrophys. J. 560, L95.

    Google Scholar 

  • Chae, J., Wang, H., Goode, P. R., Strous, L., and Yun, H. S.: 2001, Astrophys. J. 560, 476.

    Google Scholar 

  • Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R. M., Schou, J., Thompson, M. J., and Tomczyk, S.: 1999, Astrophys. J. 527, 445.

    Google Scholar 

  • Démoulin, P., Bagalá, L. G., Mandrini, C. H., Hénoux, J. C., and Rovira M. G.: 1997, Astron. Astrophys. 527, 305.

    Google Scholar 

  • Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L. et al.: 2001, Astron. Astrophys., in press.

  • DeVore, C. R.: 2000, Astrophys. J. 539, 944.

    Google Scholar 

  • DeVore, C. R. and Antiochos, S. K.: 2000, Astrophys. J. 539, 954.

    Google Scholar 

  • Emonet, T. and Moreno-Insertis, F.: 1998, Astrophys. J. 492, 804.

    Google Scholar 

  • Finn, J. H. and Antonsen, T. M.: 1985, Comm. Plasma Phys. Contr. Fusion, 9, 111.

    Google Scholar 

  • Glover, A., Ranns, N. D. R., Harra, L. K., and Culhane, J. L.: 2000, Geophys. Res. Lett. 27, 2161.

    Google Scholar 

  • Green, L. M., Ló pez Fuentes, M. C., Mandrini, C. H., Démoulin, P., van Driel-Gesztelyi, L., and Culhane, J. L.: 2002, Solar Phys., in press.

  • Hale, G. E., Ellerman, F., Nicholson, S. B., and Joy, A. H.: 1919, Astrophys. J. 49, 153.

    Google Scholar 

  • Komm, R. W., Howard, R. F., and Harvey, J. W.: 1993, Solar Phys. 143, 19.

    Google Scholar 

  • Leka, K. D., Canfield, R. C., McClymont, A. N., and van Driel-Gesztelyi, L.: 1996, Astrophys. J. 462, 547.

    Google Scholar 

  • Low, B. C.: 1996, Solar Phys. 167, 217.

    Google Scholar 

  • Mikić, Z. and Linker, J. A.: 1994, Astrophys. J. 430, 898.

    Google Scholar 

  • Pevtsov, A. A., Canfield, R. C., and Metcalf, T. R.: 1995, Astrophys. J. 440, L109.

    Google Scholar 

  • Portier-Fozzani F., Aschwanden M., Démoulin P., Neupert W., and EIT Team: 2001, Solar Phys. 203, 289.

    Google Scholar 

  • Rust, D. M. and Kumar, A.: 1996, Astrophys. J. 464, L199.

    Google Scholar 

  • Seehafer, N.: 1990, Solar Phys. 125, 219.

    Google Scholar 

  • Taylor, J. B.: 1974, Phys. Rev. Lett. 33, 1139.

    Google Scholar 

  • Titov, V. S. and Démoulin, P.: 1999, Astron. Astrophys. 351, 707.

    Google Scholar 

  • van Ballegooijen, A. A. and Martens, P. C. H.: 1990, Astrophys. J. 361, 283.

    Google Scholar 

  • Wang, J.: 1996, Solar Phys. 163, 319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Démoulin, P., Mandrini, C., Van Driel-Gesztelyi, L. et al. The Magnetic Helicity Injected by Shearing Motions. Solar Physics 207, 87–110 (2002). https://doi.org/10.1023/A:1015531804337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015531804337

Keywords

Navigation