Skip to main content
Log in

Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Potato plants (Solanum tuberosum L. cv. Désirée) transformed with sense and antisense constructs of a cDNA encoding the potato hexokinase 2 exhibited altered enzyme activities and expression of hexokinase 2 mRNA. Measurements of the maximum catalytic activity of hexokinase revealed an 11-fold variation in leaf (from 48% of the wild-type activity in antisense transformants to 446% activity in sense transformants) and an 8-fold variation in developing tubers (from 35% of the wild-type activity in antisense transformants to 212% activity in sense transformants). Despite the wide range of hexokinase activities, no substantial change was found in the fresh weight yield, starch, sugar and metabolite levels of transgenic tubers. However, both potato hexokinases 1 and 2 were able to complement the hyposensitivity of antisense hexokinase 1 Arabidopsis transgenic plants to glucose. In an in vitro bioassay of seed germination in a medium with high glucose levels, double transformants showed the same sensitivity to glucose as that of the wild-type ecotype, displaying a stunted phenotype in hypocotyls, cotyledons and roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amasino, R.M. 1986. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal. Biochem. 152: 304–307.

    Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris, Life Sci. 316: 1194–1199.

    Google Scholar 

  • Bork, P., Sander, C. and Valencia, A. 1993. Convergent evolution of similar enzymatic function on different protein fold: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Prot. Sci. 2: 31–40.

    Google Scholar 

  • Burrell, M.M., Mooney, P.J., Blundy, M., Carter, D., Wilson, F., Green, J., Blundy, K.S. and ap Rees, T. 1994. Genetic manipulation of 6–phosphofructokinase in potato tubers. Planta 194: 95–101.

    Google Scholar 

  • Chiou, T.-J. and Bush D.R. 1998. Sucrose is a signal molecule in assimilate partitioning. Proc. Natl. Acad. Sci. USA 95: 4784–4788.

    Google Scholar 

  • Copeland, L. and Morrell, M. 1985. Hexose kinases from the plant cytosolic fraction of soybean Glycine max cultivar Williams nodules. Plant Physiol. 79: 114–117.

    Google Scholar 

  • Copeland, L. and Tanner, G.J. 1988. Hexose kinases of avocado. Physiol. Plant. 74: 531–536.

    Google Scholar 

  • Dai, N, Schaffer, A., Petreikov, M., Shahak, Y., Giller, Y., Ratner, K., Levine, A. and Granot, D. 1999. Over-expression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11: 1253–1266.

    Google Scholar 

  • Dietze, J., Blau, A. and Willmitzer, L. 1995. Agrobacterium-mediated transformation of potato (Solanum tuberosum). In: I. Potrykus and G. Spangenberg (Eds.) Gene Transfer to Plants XII, Springer-Verlag, Berlin, pp. 24–29.

    Google Scholar 

  • Doehlert, D.C. 1989. Separation and characterisation of four hexose kinases from developing maize kernels. Plant Physiol. 89: 1042–1048.

    Google Scholar 

  • Fernie, A.R., Riesmeier, J.W., Martiny, A., Ramalingam, S., Willmitzer, L. and Trethewey, R.N. 2000. Consequences of the expression of a bacterial glucokinase in potato tubers, both in combination with and independently of a yeast-derived invertase. Aust. J. Plant Physiol. 27: 827–833.

    Google Scholar 

  • Galina, A., Reis, M., Albuquerque, M.C., Puyou, A.G., Puyou, M.T.G. and de Meis, L. 1995. Different properties of the mitochondrial and cytosolic hexokinases in maize roots. Biochem. J. 309: 105–112.

    Google Scholar 

  • Geigenberger, P., Hajizerai, M.R., Geiger, M., Deiting, U., Sonnewald, U. and Stitt, M. 1998. Over-expression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 205: 428–437.

    Google Scholar 

  • Gibson, S.I. 2000. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 124: 1532–1539.

    Google Scholar 

  • Godt, D.E., Riegel, A. and Roitsch, T. 1995. Regulation of sucrose synthase expression in Chenopodium rubrum: characterization of sugar induced expression in photoautotrophic suspension cultures and sink tissue specific expression in plants. J. Plant Physiol. 146: 231–236.

    Google Scholar 

  • Graham, I.A., Denby, K.J. and Leaver, C.J. 1994. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6: 761–772.

    Google Scholar 

  • Greenberg, J.T., Guo, A., Klessig, D.F. and Ausubel F.M. 1994. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563.

    Google Scholar 

  • Grupe, A., Hultgren, B., Ryan, A., Ma, H.I., Bauer, M. and Stewart, T.A. 1995. Transgenic knockouts reveal a critical requirement for pancreatic β cell glucokinase in maintaining glucose homeostasis. Cell 83: 69–78.

    Google Scholar 

  • Halford, N.G., Purcell, P.C. and Hardie, D.G. 1999a. Is hexokinase really a sugar sensor in plants? Trends Plant Sci. 4: 117–120.

    Google Scholar 

  • Halford, N.G., Purcell, P.C. and Hardie, D.G. 1999b. Reply... The sugar sensing story. Trends Plant Sci. 4: 251.

    Google Scholar 

  • Jang, J.-C. and Sheen, J. 1994. Sugar sensing in higher plants. Plant Cell 6: 1665–1679.

    Google Scholar 

  • Jang, J.-C., León, P., Zhou, L. and Sheen, J. 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19.

    Google Scholar 

  • Jang, J.-C. and Sheen, J. 1997. Sugar sensing in higher plants. Trends Plant Sci. 2: 208–214.

    Google Scholar 

  • Johnston, M. 1999. Feasting, fasting and fermenting: glucose sensing in yeast and other cells. Trends Genet. 15: 29–33.

    Google Scholar 

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47: 509–540.

    Google Scholar 

  • Kossmann, J., Visser, R.G.F., Müller-Röber, B., Willmitzer, L. and Sonnewald, U. 1991. Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for coexpression of starch biosynthetic genes. Mol. Gen. Genet. 230: 39–44.

    Google Scholar 

  • Kruger, N.J. 1997. Carbohydrate synthesis and degradation. In:. D.T. Dennis, D.H. Turpin, D.D. Lefebvre and D.B. Layzell (Eds.) Plant Metabolism, Longman, Harlow, pp. 83–104.

    Google Scholar 

  • Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    Google Scholar 

  • Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J.W., Frommer, W.B. and Ward, J.M. 1999. The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11: 707–726.

    Google Scholar 

  • Logemann, J., Schell, J. and Willmitzer L. 1987. Improved method for the isolation of RNA from plant tissues. Ann. Biochem. 163: 16–20.

    Google Scholar 

  • Liu, X.J., Prat, S., Willmitzer, L. and Frommer, W.D. 1990. Cis-regulatory elements directing tuber-specific and sucrose inducible expression of a chimeric class I patatin promoter-GUS-gene fusion. Mol. Gen. Genet. 223: 401–409.

    Google Scholar 

  • Ma, H. and Botstein, D. 1986. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression. Mol. Cell. Biol. 6: 4046–4052.

    Google Scholar 

  • Martinez-Barajas, E. and Randall D.D. 1998. Purification and characterization of a glucokinase from young tomato (Lycopersicum esculentum L. Mill.) fruit. Planta 205: 567–573.

    Google Scholar 

  • Menu, T., Rothan, C., Dai, N., Petreikov, M., Etienne, C., Destrac-Irvine, A., Schaffer, A., Granot, D. and Ricard, B. 2001. Cloning and characterization of a cDNA encoding hexokinase from tomato. Plant Sci. 160: 209–218.

    Google Scholar 

  • Miernyk, J.A. and Dennis, D.T. 1983. Mitochondrial, plastid, and cytosolic isozymes of hexokinase from developing endosperm of Ricinus communis. Arch. Biochem. Biophys. 226: 458–468.

    Google Scholar 

  • Moore, B.D. and Sheen, J. 1999. Plant sugar sensing and signalling: a complex reality. Trends Plant Sci. 4: 250.

    Google Scholar 

  • Nakai, K. 2000. Protein sorting signals and prediction of subcellular localization. Adv. Prot. Chem. 54: 277–344.

    Google Scholar 

  • Özcan, S., Dover, J. and Johnston, M. 1998. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17: 2566–2573.

    Google Scholar 

  • Pego, J.V., Weisbeek, P.J. and Smeekens, S.C.M. 1999. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol. 119: 1017–1023.

    Google Scholar 

  • Prata, R.T.N., Williamson, J.D., Conkling, M.A. and Pharr D.M. 1997. Sugar repression of mannitol dehydrogenase activity in celery cells. Plant Physiol. 114: 307–314.

    Google Scholar 

  • Renz, A. and Stitt, M. 1993. Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers. Planta 190: 166–175.

    Google Scholar 

  • Renz, A., Merlo, L. and Stitt, M. 1993. Partial purification from potato tubers of three fructokinases and three hexokinases which show differing organ and developmental specificity. Planta 190: 156–165.

    Google Scholar 

  • Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J. and Willmitzer L. 1989. Both developmental and metabolic signals activate the promoter of the class I patatin gene. EMBO J. 8: 23–29.

    Google Scholar 

  • Roitsch, T., Bittner, M. and Godt, D.E. 1995. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and glucose analog and tissue-specific expression suggest a role in sink-regulation. Plant Phyisiol. 108: 285–294.

    Google Scholar 

  • Rook, F., Gerrits, N., Kortstee, A., van Kampen, M., Borrias, M., Weisbeek, P. and Smeekens, S. 1998. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J. 15: 253–263.

    Google Scholar 

  • Rose, M., Albig, W. and Entian, K.D. 1991. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur. J. Biochem. 199: 511–518.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schnarrenberger, C. 1990. Characterization and compartmentation in green leaves of hexokinases with different specificities for glucose, fructose and mannose and for nucleoside triphosphates. Planta 181: 249–255.

    Google Scholar 

  • Sheen, J., Zhou, L. and Jang, J.-C. 1999. Sugars as signalling molecules. Curr. Opin. Plant Biol. 2: 410–418.

    Google Scholar 

  • Sindelar, L., Sindelarova, M. and Burketova, L. 1998. Hexokinases of tobacco leaves: influence of plant age on particulate and soluble isozyme composition. Biol. Plant. 40: 469–474.

    Google Scholar 

  • Smeekens, S. 1998. Sugar regulation of gene expression in plants. Curr. Opin. Plant Biol. 1: 230–234.

    Google Scholar 

  • Smeekens, S. 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49–81.

    Google Scholar 

  • Trethewey, R.N., Geigenberger, P., Riedel, K., Hajizerai, M.R., Sonnewald, U., Stitt, M., Riesmeier, J.W. and Willmitzer, L. 1998. Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J. 15: 109–118.

    Google Scholar 

  • Turner, J.F., Chensee, Q.J. and Harrison, D.D. 1977. Glucokinase of pea seeds. Biochim. Biophys. Acta 480: 367–375.

    Google Scholar 

  • Turner, J.F. and Copeland, L. 1981. Hexokinase II of pea seeds. Plant Physiol. 68: 1123–1127.

    Google Scholar 

  • Veramendi, J., Roessner, U., Renz, A., Willmitzer, L. and Trethewey R.N. 1999. Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol. 121: 123–133.

    Google Scholar 

  • Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmirroli, N., Machray, G.C., Oparka, K.J. 2001. Tuberisation in potato involves a switch from apoplastic to symplastic phloem loading. Plant Cell 13: 385–398.

    Google Scholar 

  • Wiese, A., Gröner, F., Sonnewald, U., Deppner, H., Lerchl, J., Hebbeker, U., Flügge, U.I. and Weber, A. 1999. Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett. 461: 13–18.

    Google Scholar 

  • Yamamoto, Y.T., Prata, R.T.N., Williamson, J.D., Weddington, M. and Pharr, D.M. 2000. Formation of a hexokinase complex is associated with changes in energy utilization in celery organs and cells. Physiol. Plant. 110: 28–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veramendi, J., Fernie, A.R., Leisse, A. et al. Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49, 491–501 (2002). https://doi.org/10.1023/A:1015528014562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015528014562

Navigation