Advertisement

Genetic Programming and Evolvable Machines

, Volume 3, Issue 2, pp 113–127 | Cite as

The Darwinian Genetic Code: An Adaptation for Adapting?

  • Stephen J. Freeland
Article

Abstract

The genetic code is a ubiquitous interface between inert genetic information and living organisms, as such it plays a fundamental role in defining the process of evolution. There have been many attempts to identify features of the code that are themselves adaptations. So far, the strongest evidence for an adaptive code is that the assignments of amino acids (encoded objects) to codons (coding units) appear to be organized so as to minimize the change in amino acid hydrophobicity that results from random mutations. One possibility not previously discussed is that this feature of the code may in fact represent an adaptation to maximize the efficiency of adaptive evolution, particularly given the maximized connectedness of protein fitness landscapes afforded by the redundancy of the code.

error minimization genetic code evolution adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Aita, S. Urata, and Y. Husumi, “From amino acid landscape to protein landscape: analysis of genetic codes in terms of fitness landscape,” J. Mol. Evol., vol. 50, pp. 313–323, 2000.Google Scholar
  2. 2.
    A. Antillon and I. Ortega-Blake, “A group theory analysis of the ambiguities in the genetic code: on the existence of a generalized genetic code,” J. Theor. Biol., vol. 112, pp. 757–769, 1985.Google Scholar
  3. 3.
    D. H. Ardell, “On error minimization in a sequential origin of the standard genetic code,” J. Mol. </del>Evol., vol. 47, pp. 1–13, 1998.CrossRefGoogle Scholar
  4. 4.
    W. Banzhaf, “Genotype-phenotype mapping and neutral variations–a case study in Genetic Programming,” in Parallel Problem Solving from Nature III, Y. Davidor, H.-P. Schwefel, and R. Männer (eds.), Springer: Berlin, 1994, pp. 322–332.Google Scholar
  5. 5.
    J. D. Bashford, I. Tsohantjis, and P. D. Jarvis, “Asupersymmetric model for the evolution of the genetic code,” Proc. Natl. Acad. Sci. USA 95, pp. 987–992, 1998.CrossRefGoogle Scholar
  6. 6.
    C. Burch and L. Chao, “Evolution by small steps and rugged landscapes in the RNAvirus phi6,” Genetics, 151, 1999.Google Scholar
  7. 7.
    D. W. Coit and A. E. Smith, “Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach,” Computers and Operations Research, vol. 23, pp. 515–526, 1996.MATHCrossRefGoogle Scholar
  8. 8.
    F. H. C. Crick, “The structure of the nucleic acids and their role in protein synthesis,” Biochem. Soc. Symp., vol. 14, pp. 25–26, 1957.Google Scholar
  9. 9.
    F. H. C. Crick, J. S. Griffith, and L. E. Orgel, “Codes without commas,” Proc. Natl. Acad. Sci. USA 43, pp. 416–421, 1957.MathSciNetCrossRefGoogle Scholar
  10. 10.
    F. H. C. Crick, “Codon-anticodon pairing: The wobble hypothesis,” J. Mol. Biol., vol. 19, pp. 548–555, 1966.Google Scholar
  11. 11.
    F. H. C. Crick, “The origin of the genetic code,” J. Mol. Biol., vol. 38, pp. 367–379, 1968.CrossRefGoogle Scholar
  12. 12.
    G. Cullman and J. Labouygues, “Noise immunity of the genetic code,” Biosystems, vol. 16, pp. 9–29, 1983.CrossRefGoogle Scholar
  13. 13.
    D. Dasgupta, “Incorporating redundancy and gene activation mechanisms in genetic search for adapting to non-stationary environments,” in Practical Handbook of Genetic Algorithms, L. Chambers (ed.), CRC Press, 1995, chap. 13, pp. 303–316.Google Scholar
  14. 14.
    M. DiGiulio, “The extension reached by the minimization of the polarity distances during the evolution of the genetic code,” J. Mol. Evol., vol. 29, pp. 288–293, 1989.CrossRefGoogle Scholar
  15. 15.
    M. DiGiulio, M. R. Copabianco, and M. Medugno, “On the optimization of the physiochemical distances between amino acids in the evolution of the genetic code,” J. Theor. Biol., vol. 168, pp. 141–144, 1994.CrossRefGoogle Scholar
  16. 16.
    M. DiGiulio, “Genetic code origin and the strength of natural selection,” J. Theor. Biol., vol. 208, pp. 141–144, 2000.CrossRefGoogle Scholar
  17. 17.
    M. DiGiulio, “The origins of the genetic code cannot be studied using measurements based on the PAM matrix because this matrix reflects the code itself, making any such analyses tautologous,” J. Theor. Biol., vol. 208, pp. 141–144, 2001.CrossRefGoogle Scholar
  18. 18.
    C. J. Epstein, “Role of the amino acid ‘code’ and of selection for conformation in the evolution of proteins,” Nature, vol. 210, pp. 25–28, 1966.CrossRefGoogle Scholar
  19. 19.
    R. A. Fisher, A Genetical Theory of Natural Selection, Clarendon Press: Oxford, 1930.Google Scholar
  20. 20.
    W. Fitch, “The relation between frequencies of amino acids and ordered trinucleotides,” J. Mol. Biol., vol. 16, pp. 1–8, 1966.CrossRefGoogle Scholar
  21. 21.
    S. J. Freeland and L. D. Hurst, “The genetic code is one in a million,” J. Mol. Evol., vol. 47, pp. 238–248, 1998.CrossRefGoogle Scholar
  22. 22.
    S. J. Freeland, R. D. Knight, L. F. Landweber, and L. D. Hurst, “Early fixation of an optimal genetic code,” Mol. Biol. Evol., vol. 17, pp. 511–518, 2000.Google Scholar
  23. 23.
    S. J. Freeland, R. D. Knight, and L. F. Landweber, “Measuring adaptation within the genetic code,” Trends Biochem. Sci., vol. 25, pp. 44–45, 2000.CrossRefGoogle Scholar
  24. 24.
    A. L. Goldberg and R. E. Wittes, “Genetic code: Aspects of organization,” Science, vol. 153, pp. 420–424, 1966.Google Scholar
  25. 25.
    N. Goldman, “Further results on error minimization within the genetic code,” J. Mol. Evol., vol. 37, pp. 662–664, 1993.Google Scholar
  26. 26.
    D. Haig and L. D. Hurst, “Aquantitative measure of error minimization in the genetic code,” J. Mol. Evol., vol. 33, pp. 412–417, 1991.CrossRefGoogle Scholar
  27. 27.
    D. Haig and L. D. Hurst, “Aquantitative measure of error minimisation within the genetic code” (Erratum), J. Mol. Evol., vol. 49, p. 708, 1999.Google Scholar
  28. 28.
    B. Hayes, “The Invention of the Genetic Code,” American Scientist, vol. 86, pp. 8–14, 1998.CrossRefGoogle Scholar
  29. 29.
    J. E. Hornos and Y. M. Hornos, “Algebraic model for the evolution of the genetic code,” Physical Review Letters, vol. 71, pp. 4401–4404, 1993.CrossRefGoogle Scholar
  30. 30.
    M. Huynen, P. Stadler, and W. Fontana, “Smoothness within ruggedness: The role of neutrality in adaptation,” Proc. Natl. Acad. Sci. USA 93, pp. 397–401, 1996.CrossRefGoogle Scholar
  31. 31.
    O. P. Judson and D. Haydon, “The genetic code: what is it good for?” J. Mol. Evol., vol. 49, pp. 539–550, 1999.CrossRefGoogle Scholar
  32. 32.
    H. Kargupta, in Genetic Algorithms in Engineering and Computer Science, C. Poloni, D. Quagliarella, J. Periaux, and G. Winter (eds.), John Wiley and Sons Ltd: New York, pp. 59–83, 1997.Google Scholar
  33. 33.
    H. Kargupta, “Astriking property of genetic code-like transformations,” Complex Systems, vol. 13, pp. 1–32, 2001.MathSciNetGoogle Scholar
  34. 34.
    S. A. Kauffman, The Origins of Order–Self-Organization and Selection in Evolution, Oxford University Press: New York, 1993.Google Scholar
  35. 35.
    J. L. King and T. H. Jukes, “Non-Darwinian evolution,” Science, vol. 164, pp. 788–798, 1969.Google Scholar
  36. 36.
    R. D. Knight, S. J. Freeland, and L. F. Landweber, “Asimple model based on mutation and selection explains compositional trends within and across genomes,” Genome Biology, vol. 2, research0010.1-0010.13, 2001.Google Scholar
  37. 37.
    R. D. Knight, “Rewiring the keyboard: Evolvability of the genetic code,” Nat. Rev. Genet., vol. 2, pp. 49–58, 2001.CrossRefGoogle Scholar
  38. 38.
    J. Konecny, M. Schöniger, I. L. Hofacker, M.-D. Weitze, and G. L. Hofacker, “Concurrent neutral evolution of mRNAsecondary structures and encoded proteins,” J. Mol. Evol., vol. 50, pp. 238–242, 2000.Google Scholar
  39. 39.
    J. Kyte and R. F. Doolittle, “Asimple method displaying the hydropathic character of a protein,” J. Mol. Biol., vol. 157, pp. 105–132, 1982.CrossRefGoogle Scholar
  40. 40.
    V. S. R. Majety, S. Venkatasubramanian, and A. E. Smith, in Proceedings of the Fifth International Industrial Engineering Research Conference, pp. 459–463, 1996.Google Scholar
  41. 41.
    A. M. Raich and J. Ghaboussi, in GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, W. Banzhaf (ed.), pp. 1691–1698, 1999.Google Scholar
  42. 42.
    P. Schuster, Theoretical and Computational Methods in Genome Research, S. Suhai (ed.), Plenum Press: New York, pp. 287–302, 1997.Google Scholar
  43. 43.
    T. M. Sonneborn, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel (eds.), Academic Press: New York, 1965.Google Scholar
  44. 44.
    M. A. Soto and C. J. Toha, “A hardware interpretation of the evolution of the genetic code,” Biosystems, vol. 18, pp. 209–215, 1985.CrossRefGoogle Scholar
  45. 45.
    R. Swanson, “Aunifying concept for the amino acid code,” Bull. Math. Bio., vol. 46, pp. 187–203, 1984.MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    E. Szathmary, “Codon swapping as a possible evolutionary mechanism,” J. Mol. Evol., vol. 32, pp. 178–182, 1991.Google Scholar
  47. 47.
    E. Szathmary and E. Zintzaras, “Astatistical test of hypotheses on the organization and origin of the genetic code,” J. Mol. Evol., vol. 35, pp. 185–189, 1992.Google Scholar
  48. 48.
    M. V. Volkenstein, “Coding of polar and non-polar amino acids,” Nature, vol. 207, pp. 294–295, 1965.CrossRefGoogle Scholar
  49. 49.
    C. R. Woese, “Order in the genetic code,” Proc. Natl. Acad. Sci. USA 54, pp. 71–75, 1965.CrossRefGoogle Scholar
  50. 50.
    C. R. Woese, “On the evolution of the genetic code,” Proc. Natl. Acad. Sci. USA 54, pp. 71–75, 1965.CrossRefGoogle Scholar
  51. 51.
    C. R. Woese, The Genetic Code: The Molecular Basis for Genetic Expression, Harper and Row: New York, 1967.Google Scholar
  52. 52.
    J. T.-F. Wong, “Role of minimization of chemical distances between amino acids in the evolution of the genetic code,” Proc. Natl. Acad. Sci. USA 77, pp. 1083–1086, 1980.CrossRefGoogle Scholar
  53. 53.
    E. Zuckerkandl and L. Pauling, Evolving Genes and Proteins, V. Bryson and H. J. Vogel (eds.), Academic Press: New York, 1965.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Stephen J. Freeland
    • 1
  1. 1.Department of BiologyUniversity of Maryland Baltimore CountyCatonsville

Personalised recommendations