Skip to main content
Log in

Methane distribution in European tidal estuaries

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Methane concentrations have been measured along salinity profilesin nine tidal estuaries in Europe (Elbe, Ems, Thames, Rhine,Scheldt, Loire, Gironde, Douro and Sado). The Rhine, Scheldt andGironde estuaries have been studied seasonally. A number ofdifferent methodologies have been used and they yieldedconsistent results. Surface water concentrations ranged from0.002 to 3.6 μM, corresponding to saturation ratios of 0.7 to1580 with a median of 25. Methane concentrations in thefresh-water end-members varied from 0.01 to 1.4 μM. Methaneconcentrations in the marine end-members were close to saturationoffshore and on the order of 0.1 μM in estuarine plumes. Methaneversus salinity profiles in river-dominated, stratified estuaries(Rhine and Douro) appeared rather erratic whereas those in thewell mixed, long-residence time estuaries (Elbe, Ems, Thames,Scheldt, Loire, Gironde and Sado) revealed consistent trends. Inthese systems dissolved methane initially decreases withincreasing salinity, then increases to a maximum at intermediateto high salinities before decreasing again going offshore. Tidalflats and creeks were identified as a methane source to estuarinewaters. The global estuarine flux of methane to the atmospherehas been calculated by combining the median water-air methanegradient (68.2 nmol dm−3) with a global area weighted transfercoefficient and the global area of estuaries. Estuaries emit 1.1to 3.0 Tg CH4 yr−1, which is less than 9% of the global marinemethane emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amouroux D, Roberts G, Rapsomanikis S & Andreae MO (2002) Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from nearshore and shelfwaters of the northwestern Black Sea. Est. Coast. Shelf Sci. (in press)

  • Abril G, Etcheber H, Le Hir P, Bassoullet P, Boutier B & Frankignoulle M(1999) Oxic/anoxic oscillations and organic carbon mineralisation in an estuarine maximum turbidity zone (The Gironde, France). Limnol. Oceanogr. 44: 1304–1315

    Google Scholar 

  • Abril G, Riou SA, Etcheber H, Frankignoulle M, de Wit R & Middelburg JJ (2000) Transient, tidal time-scale nitrogen transformation in an estuarine turbidity maximum-fluid mud system (The Gironde, S.W. France). Est. Coast. Shelf Sci. 50: 703–715

    Google Scholar 

  • Bange HW, Bartell UH, Rapsomanikis S & Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeoch. Cycles 8: 465–480

    Google Scholar 

  • Bange HW, Rapsomanikis S & Andreae MO (1996) The Aegaen Sea as a source of atmospheric nitrous oxide and methane. Marine Chemistry 53: 41–49

    Google Scholar 

  • Bange HW, Dahlke S, Ramesh R, Meyer-Reil LA & Andreae MO (1998) Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea. Est. Coast. Shelf Sci. 47: 807–817

    Google Scholar 

  • Berger U & Heyer J (1989) Untersuchungen zum Methankreislauf in der Saale. J. Basic Microb. 29: 195–213

    Google Scholar 

  • Bugna GC, Chanton JP, Cable JE, Burnett WC & Cable PH (1996) The importance of groundwater discharge to the methane budgets of nearshore and continental shelf waters of the Gulf of New Mexico. Geochim. Cosmochim. Acta 60: 4735–4746

    Google Scholar 

  • Cicerone RJ & Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeoch. Cycles 2: 299–327

    Google Scholar 

  • De Angelis MA & Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol. Oceanogr. 32: 716–722

    Google Scholar 

  • De Angelis MA & Scranton MI (1993) Fate of methane in the Hudson River and estuary. Glob. Biogeoch. Cycles 7: 509–523

    Google Scholar 

  • De Angelis MA & Lee C (1994) Methane production during zooplankton grazing on marine phytoplankton. Limnol. Oceanogr. 39: 1298–1308

    Google Scholar 

  • De Ruijter WPM, Visser AW & Bos WG (1997) The Rhine outlow: A prototypical pulsed discharge plume in a high energy shallow sea. J. Mar. Syst. 12: 263–276

    Google Scholar 

  • De Wilde HPJ & Duyzer JH (1995) Methane emission off the Dutch coast: air-sea concentration differences versus atmospheric gradients. In: Jähne B & Monahan E (Eds) Air-Sea Gas Transfer (pp 763–773). AEON Verlag, Hanau Germany

    Google Scholar 

  • De Wilde HPJ & Helder W (1997) Nitrous oxide in the Somali Basin: The role of upwelling. Deep Sea Res. II, 44: 1319–1340

    Google Scholar 

  • Frankignoulle M, Bourge I & Wollast R. (1996) Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnol. Oceanogr. 41: 365–369

    Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E & Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282: 434–436

    Google Scholar 

  • Frankignoulle M & Middelburg JJ (2002) Biogases in tidal European Estuaries: the BIOGEST project. Biogeochem. 59: 1–4

    Google Scholar 

  • Frost T & Upstill-Goddard RC (1999) Air-sea exchange into the millennium: Progress and uncertainties. Ocean. Mar. Biol. Ann. Rev. 37: 1–45

    Google Scholar 

  • Hamilton SK, Sippel SJ & Melack JM (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochem. 30: 115–141

    Google Scholar 

  • Hovland M, Judd AG & Burke RA (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26: 559–578

    Google Scholar 

  • Jones RD & Amador JA (1993) Methane and carbon monoxide production, oxidation and turnover times in the Caribbean Sea as influenced by the Orinoco river. J. Geophys. Res. 98: 2353–2359

    Google Scholar 

  • Jones JB & Mulholland PJ (1998a) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40: 57–72

    Google Scholar 

  • Jones JB & Mulholland PJ (1998b) Methane input and evasion in a hardwood forest stream: Effects of subsurface flow from shallow and deep pathways. Limnol. Oceanogr. 43: 1243–1250

    Google Scholar 

  • Kelley CA, Martens CS & Ussler III W (1995) Methane dynamics across a tidally flooded riverbank margin. Limnol. Oceanogr. 40: 1112–1129

    Google Scholar 

  • Lamontagne RA, Swinnerton JW, Linnenbom VJ & Smith WD (1973) Methane concentrations in various marine environments. J. Geoph. Res. 78: 5317–5323

    Google Scholar 

  • Lilley MD, de Angelis MA & Olson JE (1996) Methane concentrations and estimated fluxes from Pacific Northwest rivers. Mitt. Internat. Verein. Limnol. 25: 187–196

    Google Scholar 

  • Liss PS & Merlivat L (1986) Air-Sea exchange rates: Introduction and synthesis. In: Buat-Menard P (Ed) The Role of Air-Sea Exchange in Geochemical Cycling (pp 113–127). D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Marino R & Howarth RW (1993) Atmospheric oxygen exchange in the Hudson River: dome measurements and comparison with other natural waters. Estuaries 16: 433–445

    Google Scholar 

  • Michaelis W, Boenisch G, Jennisch A, Ladage S, Richnow HH, Seifert R & Stoffers P (1990) Methane and 3He anomalies related to submarine intraplate volcanic activities. Mitt. Geol. Pal. Inst. Univ. Hamburg 69: 117–127

    Google Scholar 

  • Middelburg JJ, Klaver G, Nieuwenhuize J, Wielemaker A, de Haas W & van der Nat JFWA (1996) Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser. 132: 157–168

    Google Scholar 

  • Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E & Zhou X. (1995) Other trace gases and atmospheric chemistry. In: Houghton JT et al. (Eds) Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios (pp 73–126). Cambridge University Press, Cambridge

    Google Scholar 

  • Pulliam WM (1993) Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol. Monogr. 63: 29–53

    Google Scholar 

  • Rehder G, Keir RS, Suess E & Pohlmann T (1998) The multiple sources and patterns of methane in North Sea waters. Aquat. Geochem. 4: 403–427

    Google Scholar 

  • Richey JE, Devol AH, Wofsy, SC, Victoria R & Riberio MNG (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol. Oceanogr. 33: 551–561

    Google Scholar 

  • Sansone FJ, Rust TR & Smith SV (1998) Methane distribution and cycling in Tomales Bay. Estuaries 21: 66–77

    Google Scholar 

  • Sansone FJ, Holmes ME & Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Glob. Biogeoch. Cycles 13: 463–474

    Google Scholar 

  • Scranton MI & McShane K (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont. Shelf Res. 11: 37–52

    Google Scholar 

  • Seifert R, Delling N, Richnow HH, Kempe S, Hefter J & Michaelis W (1999) Ethylene and methane in the upper water column of the subtropical Atlantic. Biogeochemistry 44: 73–91

    Google Scholar 

  • Swinnerton JW & Lamontagne RA (1974) Oceanic distribution of low-molecular-weight hydrocarbons: Baseline measurements. Environ. Sci. Tech. 8: 657–663

    Google Scholar 

  • Van der Nat JFWA de Brouwer JFC, Middelburg JJ & Laanbroek HJ (1997) Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Appl Environ. Microb. 63: 4734–4740

    Google Scholar 

  • Van der Nat JFWA & Middelburg JJ (2000) Methane emission from tidal freshwater marshes. Biogeochem. 49: 103–121

    Google Scholar 

  • Watanabe S, Higashitani N, Tusurshima N & Tsunogai S (1994) Annual variation of methane in seawater in Funka Bay, Japan. J. Oceanogr. 5: 415–421

    Google Scholar 

  • Wernecke G, Flöser G, Korn S, Weitkamp C & Michaelis W (1994) First measurements of the methane concentration in the North Sea with a new in-situ device. Bull. Geol. Soc. Denmark 41: 5–11

    Google Scholar 

  • Wiesenburg DA & Guinasso NLJ (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. J. Chem. Eng. Data 24: 356–360

    Google Scholar 

  • Wilkniss PE, Lamontagne RE, Larson RE & Swinnerton JW (1978) Atmospheric trace gases and land and sea breezes at the Sepik River Coast of Papua, New Guinea. J. Geophys. Res. 83: 3672–3574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middelburg, J.J., Nieuwenhuize, J., Iversen, N. et al. Methane distribution in European tidal estuaries. Biogeochemistry 59, 95–119 (2002). https://doi.org/10.1023/A:1015515130419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015515130419

Navigation