Biogeochemistry

, Volume 59, Issue 1–2, pp 95–119 | Cite as

Methane distribution in European tidal estuaries

  • Jack J. Middelburg
  • Joop Nieuwenhuize
  • Niels Iversen
  • Nana Høgh
  • Hein de Wilde
  • Wim Helder
  • Richard Seifert
  • Oliver Christof
Article

Abstract

Methane concentrations have been measured along salinity profilesin nine tidal estuaries in Europe (Elbe, Ems, Thames, Rhine,Scheldt, Loire, Gironde, Douro and Sado). The Rhine, Scheldt andGironde estuaries have been studied seasonally. A number ofdifferent methodologies have been used and they yieldedconsistent results. Surface water concentrations ranged from0.002 to 3.6 μM, corresponding to saturation ratios of 0.7 to1580 with a median of 25. Methane concentrations in thefresh-water end-members varied from 0.01 to 1.4 μM. Methaneconcentrations in the marine end-members were close to saturationoffshore and on the order of 0.1 μM in estuarine plumes. Methaneversus salinity profiles in river-dominated, stratified estuaries(Rhine and Douro) appeared rather erratic whereas those in thewell mixed, long-residence time estuaries (Elbe, Ems, Thames,Scheldt, Loire, Gironde and Sado) revealed consistent trends. Inthese systems dissolved methane initially decreases withincreasing salinity, then increases to a maximum at intermediateto high salinities before decreasing again going offshore. Tidalflats and creeks were identified as a methane source to estuarinewaters. The global estuarine flux of methane to the atmospherehas been calculated by combining the median water-air methanegradient (68.2 nmol dm−3) with a global area weighted transfercoefficient and the global area of estuaries. Estuaries emit 1.1to 3.0 Tg CH4 yr−1, which is less than 9% of the global marinemethane emission.

Douro Elbe emission Ems estuaries Gironde Loire methane Rhine rivers Sado Scheldt Thames 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amouroux D, Roberts G, Rapsomanikis S & Andreae MO (2002) Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from nearshore and shelfwaters of the northwestern Black Sea. Est. Coast. Shelf Sci. (in press)Google Scholar
  2. Abril G, Etcheber H, Le Hir P, Bassoullet P, Boutier B & Frankignoulle M(1999) Oxic/anoxic oscillations and organic carbon mineralisation in an estuarine maximum turbidity zone (The Gironde, France). Limnol. Oceanogr. 44: 1304–1315Google Scholar
  3. Abril G, Riou SA, Etcheber H, Frankignoulle M, de Wit R & Middelburg JJ (2000) Transient, tidal time-scale nitrogen transformation in an estuarine turbidity maximum-fluid mud system (The Gironde, S.W. France). Est. Coast. Shelf Sci. 50: 703–715Google Scholar
  4. Bange HW, Bartell UH, Rapsomanikis S & Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeoch. Cycles 8: 465–480Google Scholar
  5. Bange HW, Rapsomanikis S & Andreae MO (1996) The Aegaen Sea as a source of atmospheric nitrous oxide and methane. Marine Chemistry 53: 41–49Google Scholar
  6. Bange HW, Dahlke S, Ramesh R, Meyer-Reil LA & Andreae MO (1998) Seasonal study of methane and nitrous oxide in the coastal waters of the southern Baltic Sea. Est. Coast. Shelf Sci. 47: 807–817Google Scholar
  7. Berger U & Heyer J (1989) Untersuchungen zum Methankreislauf in der Saale. J. Basic Microb. 29: 195–213Google Scholar
  8. Bugna GC, Chanton JP, Cable JE, Burnett WC & Cable PH (1996) The importance of groundwater discharge to the methane budgets of nearshore and continental shelf waters of the Gulf of New Mexico. Geochim. Cosmochim. Acta 60: 4735–4746Google Scholar
  9. Cicerone RJ & Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeoch. Cycles 2: 299–327Google Scholar
  10. De Angelis MA & Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol. Oceanogr. 32: 716–722Google Scholar
  11. De Angelis MA & Scranton MI (1993) Fate of methane in the Hudson River and estuary. Glob. Biogeoch. Cycles 7: 509–523Google Scholar
  12. De Angelis MA & Lee C (1994) Methane production during zooplankton grazing on marine phytoplankton. Limnol. Oceanogr. 39: 1298–1308Google Scholar
  13. De Ruijter WPM, Visser AW & Bos WG (1997) The Rhine outlow: A prototypical pulsed discharge plume in a high energy shallow sea. J. Mar. Syst. 12: 263–276Google Scholar
  14. De Wilde HPJ & Duyzer JH (1995) Methane emission off the Dutch coast: air-sea concentration differences versus atmospheric gradients. In: Jähne B & Monahan E (Eds) Air-Sea Gas Transfer (pp 763–773). AEON Verlag, Hanau GermanyGoogle Scholar
  15. De Wilde HPJ & Helder W (1997) Nitrous oxide in the Somali Basin: The role of upwelling. Deep Sea Res. II, 44: 1319–1340Google Scholar
  16. Frankignoulle M, Bourge I & Wollast R. (1996) Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnol. Oceanogr. 41: 365–369Google Scholar
  17. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E & Théate J-M (1998) Carbon dioxide emission from European estuaries. Science 282: 434–436Google Scholar
  18. Frankignoulle M & Middelburg JJ (2002) Biogases in tidal European Estuaries: the BIOGEST project. Biogeochem. 59: 1–4Google Scholar
  19. Frost T & Upstill-Goddard RC (1999) Air-sea exchange into the millennium: Progress and uncertainties. Ocean. Mar. Biol. Ann. Rev. 37: 1–45Google Scholar
  20. Hamilton SK, Sippel SJ & Melack JM (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochem. 30: 115–141Google Scholar
  21. Hovland M, Judd AG & Burke RA (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26: 559–578Google Scholar
  22. Jones RD & Amador JA (1993) Methane and carbon monoxide production, oxidation and turnover times in the Caribbean Sea as influenced by the Orinoco river. J. Geophys. Res. 98: 2353–2359Google Scholar
  23. Jones JB & Mulholland PJ (1998a) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40: 57–72Google Scholar
  24. Jones JB & Mulholland PJ (1998b) Methane input and evasion in a hardwood forest stream: Effects of subsurface flow from shallow and deep pathways. Limnol. Oceanogr. 43: 1243–1250Google Scholar
  25. Kelley CA, Martens CS & Ussler III W (1995) Methane dynamics across a tidally flooded riverbank margin. Limnol. Oceanogr. 40: 1112–1129Google Scholar
  26. Lamontagne RA, Swinnerton JW, Linnenbom VJ & Smith WD (1973) Methane concentrations in various marine environments. J. Geoph. Res. 78: 5317–5323Google Scholar
  27. Lilley MD, de Angelis MA & Olson JE (1996) Methane concentrations and estimated fluxes from Pacific Northwest rivers. Mitt. Internat. Verein. Limnol. 25: 187–196Google Scholar
  28. Liss PS & Merlivat L (1986) Air-Sea exchange rates: Introduction and synthesis. In: Buat-Menard P (Ed) The Role of Air-Sea Exchange in Geochemical Cycling (pp 113–127). D. Reidel Publishing Company, DordrechtGoogle Scholar
  29. Marino R & Howarth RW (1993) Atmospheric oxygen exchange in the Hudson River: dome measurements and comparison with other natural waters. Estuaries 16: 433–445Google Scholar
  30. Michaelis W, Boenisch G, Jennisch A, Ladage S, Richnow HH, Seifert R & Stoffers P (1990) Methane and 3He anomalies related to submarine intraplate volcanic activities. Mitt. Geol. Pal. Inst. Univ. Hamburg 69: 117–127Google Scholar
  31. Middelburg JJ, Klaver G, Nieuwenhuize J, Wielemaker A, de Haas W & van der Nat JFWA (1996) Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol. Prog. Ser. 132: 157–168Google Scholar
  32. Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E & Zhou X. (1995) Other trace gases and atmospheric chemistry. In: Houghton JT et al. (Eds) Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios (pp 73–126). Cambridge University Press, CambridgeGoogle Scholar
  33. Pulliam WM (1993) Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol. Monogr. 63: 29–53Google Scholar
  34. Rehder G, Keir RS, Suess E & Pohlmann T (1998) The multiple sources and patterns of methane in North Sea waters. Aquat. Geochem. 4: 403–427Google Scholar
  35. Richey JE, Devol AH, Wofsy, SC, Victoria R & Riberio MNG (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol. Oceanogr. 33: 551–561Google Scholar
  36. Sansone FJ, Rust TR & Smith SV (1998) Methane distribution and cycling in Tomales Bay. Estuaries 21: 66–77Google Scholar
  37. Sansone FJ, Holmes ME & Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Glob. Biogeoch. Cycles 13: 463–474Google Scholar
  38. Scranton MI & McShane K (1991) Methane fluxes in the southern North Sea: the role of European rivers. Cont. Shelf Res. 11: 37–52Google Scholar
  39. Seifert R, Delling N, Richnow HH, Kempe S, Hefter J & Michaelis W (1999) Ethylene and methane in the upper water column of the subtropical Atlantic. Biogeochemistry 44: 73–91Google Scholar
  40. Swinnerton JW & Lamontagne RA (1974) Oceanic distribution of low-molecular-weight hydrocarbons: Baseline measurements. Environ. Sci. Tech. 8: 657–663Google Scholar
  41. Van der Nat JFWA de Brouwer JFC, Middelburg JJ & Laanbroek HJ (1997) Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Appl Environ. Microb. 63: 4734–4740Google Scholar
  42. Van der Nat JFWA & Middelburg JJ (2000) Methane emission from tidal freshwater marshes. Biogeochem. 49: 103–121Google Scholar
  43. Watanabe S, Higashitani N, Tusurshima N & Tsunogai S (1994) Annual variation of methane in seawater in Funka Bay, Japan. J. Oceanogr. 5: 415–421Google Scholar
  44. Wernecke G, Flöser G, Korn S, Weitkamp C & Michaelis W (1994) First measurements of the methane concentration in the North Sea with a new in-situ device. Bull. Geol. Soc. Denmark 41: 5–11Google Scholar
  45. Wiesenburg DA & Guinasso NLJ (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and seawater. J. Chem. Eng. Data 24: 356–360Google Scholar
  46. Wilkniss PE, Lamontagne RE, Larson RE & Swinnerton JW (1978) Atmospheric trace gases and land and sea breezes at the Sepik River Coast of Papua, New Guinea. J. Geophys. Res. 83: 3672–3574Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jack J. Middelburg
    • 1
  • Joop Nieuwenhuize
    • 1
  • Niels Iversen
    • 2
  • Nana Høgh
    • 2
  • Hein de Wilde
    • 3
  • Wim Helder
    • 3
  • Richard Seifert
    • 4
  • Oliver Christof
    • 4
  1. 1.Netherlands Institute of EcologyNT YersekeThe Netherlands
  2. 2.Department of Civil Engineering, Environmental Engineering LaboratoryAalborg UniversityAalborgDenmark
  3. 3.Netherlands Institute of Sea ResearchDen BurgThe Netherlands
  4. 4.Institute of Biogeochemistry and Marine ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations