Advertisement

Ecotoxicology

, Volume 11, Issue 3, pp 165–180 | Cite as

Effects of a Mixture of Two Insecticides in Freshwater Microcosms: I. Fate of Chlorpyrifos and Lindane and Responses of Macroinvertebrates

  • Jan G. M. Cuppen
  • Steven J. H. Crum
  • Harry H. Van den Heuvel
  • Rob A. Smidt
  • Paul J. Van den Brink
Article

Abstract

Effects of chronic application of a mixture of the insecticides chlorpyrifos and lindane were studied in indoor freshwater microcosms. The exposure concentrations (based on 0, 0.005, 0.01, 0.05, 0.1 and 0.5 times the LC50 of the most sensitive standard test organism for each compound) were kept at a constant level for four weeks. The calculated mean concentrations for chlorpyrifos were found to be almost at their corresponding nominal level during the treatment period. The mean calculated lindane concentrations, however, were found to be 15–40% higher than intended. In the post treatment period both insecticides dissipated fast (t1/2: chlorpyrifos 9 days, lindane 22 days) from the water phase. The concentrations of the mixture at the highest treatment level corresponded to 0.53 toxic units (TU) for Daphnia magna and 0.61 TU for the most sensitive fish. The decomposition of Populus leaves in litter bags was significantly lower at the three highest insecticide concentrations. The macroinvertebrate community was seriously affected at the three highest treatment levels, with Crustacea and the Chironomidae Corynoneura proving to be the most sensitive groups. Gastropoda and Oligochaeta were relatively insensitive and some taxa (e.g. Valvata piscinalis, juvenile Physa fontinalis, Nemertea and Stylaria lacustris) increased in numbers. The observed effects could be explained from the individual toxicity of the insecticides to the invertebrates, and did not indicate synergistic effects. A second paper (Van den Brink et al., 2002) addresses the effects on other endpoints, as well as the overall risk assessment of the insecticide mixture.

chlorpyrifos ecological risk assessment lindane pesticides plankton semi-field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brock, T.C.M., Van den Bogaert, M., Bos, A.R., Van Breukelen, S.W.F., Reiche, R., Terwoert, J., Suykerbuyk, R.E.M. and Roijackers, R.M.M. (1992a). Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: II Secondary effects on community structure. Arch. Environ. Contaminat. Toxicol. 23, 391–409.Google Scholar
  2. Brock, T.C.M., Crum, S.J.H., Van Wijngaarden, R.P.A., Budde, B.J., Tijink, J., Zuppelli, A. and Leeuwangh, P. (1992b). Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: I. Fate and primary effects of the active ingredient chlorpyrifos. Arch. Environ. Contaminat. Toxicol. 23, 69–84.Google Scholar
  3. Brock, T.C.M., Huijbrechts, C.A.M., Van de Steeg-Huberts, M.J.H.A. and Vlasblom, M.A. (1982). In situ studies on the breakdown of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae): some methodological aspects of the litter bag technique. Hydrobiol. Bull. 16, 35–49.Google Scholar
  4. Brock, T.C.M., Roijackers, R.M.M., Rollon, R., Bransen, F. and Van der Heyden, L. (1995). Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms. II. Responses of macrophytes, periphyton and macroinvertebrate grazers. Archiv für Hydrobiologie 134, 53–74.Google Scholar
  5. Brock, T.C.M., Vet, J.J.R.M., Kerkhofs, M.J.J., Lijzen, J., Van Zuilekom, W.J. and Gylstra, R. (1993). Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: III. Aspects of ecosystem functioning. Arch. Environ. Contaminat. Toxicol. 25, 160–9.Google Scholar
  6. Cuppen, J.G.M., Gylstra, R., Van Beusekom, S., Budde, B.J. and Brock, T.C.M. (1995). Effects of nutrient loading and insecticide application on the ecology of Elodea-dominated freshwater microcosms. III. Responses of macroinvertebrate detritivores, breakdown of plant litter, and final conclusions. Archiv für Hydrobiologie 134, 157–77.Google Scholar
  7. Deneer, J.W. (2000). Toxicity of mixtures of pesticides in aquatic systems. Pest. Manag. Sci. 56, 516–20.Google Scholar
  8. European Union (1997). Council Directive 97/57/EC of September 21, 1997; Establishing Annex IV to Directive 91/414/EEC concerning the placing of plant protection products on the market. Off. J. Eur. Communi. L 265, 87–109.Google Scholar
  9. Giesy, J.P., Solomon, K.R., Coates, J.R., Dixon, K.R., Giddings, J.M. and Kenega, E.E. (1999). Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev. Environ. Contaminat. Toxicol. 160, 1–150.Google Scholar
  10. Green, D.W.J., Williams, K.A. and Pascoe, D. (1986). Studies on the acute toxicity of pollutants to freshwater macroinvertebrates. 4. Lindane (gamma-hexachlorocyclohexane). Archiv für Hydrobiologie 106, 263–73.Google Scholar
  11. Hartgers, E.M., Aalderink, G.H., Van den Brink, P.J., Gylstra, R., Wiegman, J.W.F. and Van Donk, E. (1998). Ecotoxicological threshold levels of a mixture of herbicides (atrazine, diuron and metolachlor) in freshwater microcosms. Aquatic Ecol. 32, 135–52.Google Scholar
  12. Hoagland, K.D., Drenner, R.W., Smith, J.D. and Cross, D.R. (1993). Freshwater community responses to mixtures of agricultural pesticides: effects of atrazine and bifenthrin. Environ. Toxicol. Chem. 12, 627–37.Google Scholar
  13. Hommen, U., Veith, D. and Dülmer, U. (1994). A computer program to evaluate plankton data from freshwater field tests. In Hill, I.R., Heimbach, F., Leeuwangh, P. and Matthiesen, P. (eds) Freshwater Field Tests for Hazard Assessment of Chemicals, pp. 503–13. Boca Raton, FL: Lewis Publishers.Google Scholar
  14. Kairesalo, T. and Koskimies, I. (1987). Grazing by oligochaetes and snails on epiphytes. Freshwater Biol. 17, 317–24.Google Scholar
  15. Kersting, K. and Van Wijngaarden, R.P.A. (1992). Effects of chlorpyrifos on a microecosystem. Environ. Toxicol. Chem. 11, 365–72.Google Scholar
  16. Mayer, F.L. and Ellersieck, M.R. (1986). Manual of acute toxicity: Interpretation and database for 410 chemicals and 66 species of freshwater animals. U.S. Fish and Wildlife Service Resource Publication 160, Washington D.C.: U.S. Dept. of the Interior.Google Scholar
  17. Mitchell, G.C., Bennett, D. and Pearson, N. (1993). Effects of lindane on macroinvertebrates and periphyton in outdoor artificial streams. Ecotoxicol. Environ. Safety 25, 90–102.Google Scholar
  18. Peither, A., Jüttner, I., Kettrup, A. and Lay, J.P. (1996). A pond mesocosm study to determine direct and indirect effects of lindane on a natural zooplankton community. Environ. Pollut. 93, 49–56.Google Scholar
  19. Stephenson, R.R. (1983). Effects of water hardness, water temperature, and size of the test organism on the susceptibility of the freshwater shrimp, Gammarus pulex (L.), to toxicants. Bull. Environ. Contaminat. Toxicol. 31, 459–66.Google Scholar
  20. Streit, B. (1978). A note on the nutrition of Stylaria lacustris (Oligochaeta: Naididae). Hydrobiologia 61, 273–6.Google Scholar
  21. Ter Braak, C.J.F. and Smilauer, P. (1998). CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4). Ithaca New York: Microcomputer Power.Google Scholar
  22. Tooby, T.E. and Durbin, F.J. (1975). Lindane residue accumulation and elimination in rainbow trout (Salmo gardenerii Richardson) and roach (Rutilus rutilus Linnaeus). Environ. Poll. 8, 79–89.Google Scholar
  23. Van den Brink, P.J., Van Donk, E., Gylstra, R., Crum, S.J.H. and Brock, T.C.M. (1995). Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor freshwater microcosms. Chemosphere 31, 3181–200.Google Scholar
  24. Van den Brink, P.J., Van Wijngaarden, R.P.A., Lucassen, W.G.H., Brock, T.C.M. and Leeuwangh, P. (1996). Effects of the insecticide Dursban 4E (active ingredient chlorpyrifos) in outdoor experimental ditches: II. Invertebrate community responses and recovery. Environ. Toxicol. Chem. 15, 1143–53.Google Scholar
  25. Van den Brink, P.J. and Ter Braak, C.J.F. (1998). Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquatic Ecol. 32, 163–78.Google Scholar
  26. Van den Brink, P.J. and Ter Braak, C.J.F. (1999). Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–48.Google Scholar
  27. Van den Brink, P.J., Hattink, J., Bransen, F., Van Donk, E. and Brock, T.C.M. (2000). Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquatic Toxicol. 48, 251–64.Google Scholar
  28. Van den Brink, P.J., Hartgers, E.M., Gylstra, R., Bransen, F. and Brock, T.C.M. (2002). The effects of a mixture of two insecticides on freshwater microcosms. II. Water quality and response of plankton community. Ecotoxicology 11, 35–51.Google Scholar
  29. Van Wijngaarden, R.P.A., Leeuwangh, P., Lucassen, W.G.H., Romijn, K., Ronday, R., Van der Velde, R. and Willigenburg, W. (1993). Acute toxicity of chlorpyrifos to fish, a newt and aquatic invertebrates. Bull. Environ. Contaminat. Toxicol. 51, 716–23.Google Scholar
  30. Verdonschot, P.F.M. and Ter Braak, C.J.F. (1994). An experimental manipulation of oligochaete communities in mesocosms treated with chlorpyrifos or nutrient additions: multivariate analyses with monte carlo permutation tests. Hydrobiologia 287, 251–66.Google Scholar
  31. Williams, D.A. (1972). The comparison of several dose levels with zero dose control. Biometrics 28, 519–31Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Jan G. M. Cuppen
    • 1
    • 2
  • Steven J. H. Crum
    • 3
  • Harry H. Van den Heuvel
    • 1
  • Rob A. Smidt
    • 3
  • Paul J. Van den Brink
    • 3
  1. 1.Aquatic Ecology and Water Quality Management GroupWageningen UniversityThe Netherlands
  2. 2.Wageningen University and Research centreWageningenThe Netherlands
  3. 3.Alterra Green World ResearchWageningen University and Research centreWageningenThe Netherlands

Personalised recommendations