Skip to main content
Log in

Utility of Chromosomal Position of Heterochromatin as a Biomarker of Radiation-Induced Genetic Damage: A Study of Chornobyl Voles (Microtus sp.)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Biomarkers that effectively document effects of chronic multi-generational exposure to contaminated environments on chromosomes would be valuable in risk assessment, remediation, and environmental decisions. Native, free-ranging populations of voles inhabiting the highly radioactive regions surrounding Reactor 4 of the Chornobyl Nuclear Power Station provide a model system to evaluate biological and chromosomal effects of chronic multi-generational exposure to radioactivity and other reactor meltdown-related pollutants. Here, we explore the utility of heterochromatic elements as potentially informative biomarkers for genetic damage in voles from the radioactive environments surrounding Chornobyl. We analyzed chromosomal positions of heterochromatin from Microtus arvalis and M. rossiaemeridionalis using fluorescent in situ hybridization. Although intrapopulational variation existed in chromosomal position and abundance of heterochromatin, none of that variation could be assigned to environmental exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R.J. and Chesser, R.K. (2000). The Chornobyl nuclear disaster and subsequent creation of a wildlife preserve. Environ. Toxicol. Chem. 19(5), 1231–2.

    Google Scholar 

  • Baker, R.J. and Wichman, H.A. (1990). Retrotransposon mys is concentrated on the sex chromosomes: implications for copy number containment. Evolution 44(8), 2083–8.

    Google Scholar 

  • Baker, R.J., Hamilton, M.J., Van Den Bussche, R.A., Wiggins, L.E., Sugg, D.W., Smith, M.H., Lomakin, M.D., Gaschak, S.P., Bundova, E.G., Rudenskaya, G.A. and Chesser, R.K. (1996). Small mammals from the most radioactive sites near the Chornobyl nuclear power plant. J. Mammal. 77, 155–70.

    Google Scholar 

  • Basso, A., Lifschitz, E. and Manso, F. (1995). Determination of intraspecific variation in sex heterochromatin of Ceratitis capitata (Wied.) by C-banding. Cytobios 83, 237–44.

    Google Scholar 

  • Bella, J.L., Serrano, L., Hewitt, G.M. and Gosalvez, J. (1993). Heterochromatin heterogeneity and rapid divergence of the sex chromosomes in Chorthippus parallelus parallelus and C. p. erthyropus (Orthoptera). Genome 36, 542–7.

    Google Scholar 

  • Bickham, J.W. and Smolen, M.J. (1994). Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicology. Environ. Health Perspect. 102(Suppl. 12), 25–8.

    Google Scholar 

  • Chesser, R.K., Sugg, D.W., Lomakin, M.D., Van Den Bussche, R.A., DeWoody, J.A., Jagoe, C.H., Dallas, C.E., Whicker, F.W., Smith, M.H., Gaschak, S.P., Chizhevsky, I.V., Lyabik, V.V., Buntova, E.G., Holloman, K. and Baker, R.J. (2000). Concentrations and dose rate estimates of 134, 137 Cesium and 90 Strontium in small mammals at Chornobyl, Ukraine. Environ. Toxicol. Chem. 19(2), 305–12.

    Google Scholar 

  • Cooper, J.E.K. and Hsu, T.C. (1971). Radiation-induced deletions and translocations of Microtus agrestis sex chromosomes in vivo. Exp. Cell Res. 67, 343–51.

    Google Scholar 

  • Costa, M., Conway, K., Imbra, R. and Wei Wang, X. (1992). Involvement of heterochromatin damage in nickel-induced transformation and resistance. In E. Nieboer and J. Nriagu (eds). Nickel and Human Health: Current Perspectives, pp. 295–303. New York: Wiley.

    Google Scholar 

  • de Frietas, T.R.O. (1994). Geographical variation of heterochromatin in Ctenomys flamarioni (Rodentia-Octodontidae) and its cytogenetic relationships with other species of the genus. Cytogenet. Cell Genet. 67, 193–8.

    Google Scholar 

  • Edwards, A.A., Virsik-Peuckert, P. and Bryant, P. (1996). Mechanisms of radiation-induced chromosome aberrations. Mutat. Res. 366, 117–28.

    Google Scholar 

  • Fluminhan, A., de Aguilar-Perecin, M.L.R. and dos Santos, J.A. (1996). Evidence for heterochromatin involvement in chromosome breakage in maize callus culture. Ann. Bot. 78, 73–81.

    Google Scholar 

  • Gamperl, R., Ehmann, C. and Bachmann, K. (1982). Genome size and heterochromatin in rodents. Genetica 58, 199–212.

    Google Scholar 

  • Hamilton, M.J., Honeycutt, R.L. and Baker, R.J. (1990). Intragenomic movement, sequence amplification, and concerted evolution in satellite DNA in harvest mice, Reithrodontomys: evidence from in situ hybridization. Chromosoma 99, 321–9.

    Google Scholar 

  • Il'enko, A.I. and Krapivko, T.P. (1994). Radioresistance of populations of bank voles Clethrionomys glareolus in radionuclide-contaminated areas. Doklady. Biol. Sci. 336, 262–6.

    Google Scholar 

  • Jamilena, M., Ruiz Rejón, C. and Ruiz Rejón, M. (1990). Variation in heterochromatin and nucleolar organizing regions of Allium subvillosum L. (Liliaceae). Genome 33, 779–84.

    Google Scholar 

  • Kovaleva, N.V., Butomo, I.V., Pavlova, M.N. and Khitrikova, L.E. (1993). Centromeric heterochromatin polymorphism in the etiology of human aneuploidy. Genetika 29(9), 1536–43.

    Google Scholar 

  • Kovalchuk, O., Arkhipov, A., Barylyak, I., Karachov, I., Titov, V., Hohn, B. and Kovalchuk, I. (2000). Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of recombination than acutely irradiated plants. Mutat. Res. 449, 47–56.

    Google Scholar 

  • Krapivko, T.P. and Il'enko, A.I. (1988). First features of radioadaptation in a population of red-backed voles (Clethrionomys glareolus) in a radiation biogeocenosis. Doklady Akademii Nauk SSSR 302(5), 1272–4.

    Google Scholar 

  • Longmire, J.L., Maltbie, M. and Baker, R.J. (1997). Use of “lysis buffer” in DNA isolation and its implication for museum collections. Occasional Papers, The Museum of Texas Tech Univ. 163, 1–3.

    Google Scholar 

  • Marchi, A. and Mezzanotte, R. (1990). Inter-and intraspecific heterochromatin variation detected by restriction endonuclease digestion in two sibling species of the Anopheles Maculipennis complex. Heredity 65, 135–42.

    Google Scholar 

  • Mourad, R. and Snell, V. (1987). Source term and radiological consequences of the Chornobyl accident. Trans. Amer. Nucl. Soc. 54, 226–8.

    Google Scholar 

  • Nadzhafova, R.S., Bulatove, N.Sh., Kozlovskii, A.I. and Ryahov, I.N. (1994). Identification of a structural chromosomal rearrangements in the karyotype of a root vole from Chornobyl. Russian J. Genet. 30(3), 318–22.

    Google Scholar 

  • Natarajan, A.T., Balajee, A.S., Boei, J.J.W.A., Darroudi, F., Dominguez, I., Hande, M.P., Meijers, M., Slijepcevic, P., Vermeulen, S. and Xiao, Y. (1996). Mechanisms of induction of chromosomal aberrations and their detection by fluorescent in situ hybridization. Mutat. Res. 372, 247–58.

    Google Scholar 

  • OCED (1998). Report on developments in radiation health science and technology and their impact on radiation protection Nuclear Energy Agency Committee on Radiation Protection and Public Health. OCED, Paris.

    Google Scholar 

  • Olivieri, G., Bodycote, J. and Wolff, S. (1984). Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 223, 594–7.

    Google Scholar 

  • Powers, D.A., Kress, T.S. and Jankowski, M.W. (1987). The Chornobyl source term. Nuclear Safety 28, 10.

    Google Scholar 

  • Rodgers, B.E. and Baker, R.J. (2000). Frequencies of micronuclei in bank voles from zones of high radiation at Chornobyl, Ukraine. Environ. Toxicol. Chem. 19(6), 1644–8.

    Google Scholar 

  • Rodgers, B.E., Wickliffe, J.K., Phillips, C.J., Chesser, R.K. and Baker, R.J. (2001). Experimental exposure of naïve bank voles, (Clethrionomys glareolus) to the Chornobyl environment: a test of radioresistance. Environ. Toxicol. Chem. 20(9), 1936–41.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Plainview NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Shugart, L.R., McCarthy, J.F. and Halbrook, R.S. (1992). Biological markers of environmental and ecological contamination: an overview. Risk Anal. 12(3), 353–60.

    Google Scholar 

  • Shugart, L.R. and Theodorakis, C.W. (1998). New trends in biological monitoring: application of biomarkers to genetic ecotoxicology. Biotherapy 11(2–3), 119–27.

    Google Scholar 

  • Sorensen, K.J., Zetterberg, L.A., Nelson, D.O., Grawe, J. and Tucker, J.D. (2000). The in vivo dose rate effect of chronic gamma radiation in mice: translocation and micronucleus analyses. Mutat. Res. 457, 125–36.

    Google Scholar 

  • Tateno, H., Kamiguchi, Y., Shimada, M. and Mikamo, K. (1996). Difference in types of radiation-induced structural chromosome aberrations and their incidences between Chinese and Syrian hamster spermatazoa. Mutat. Res. 350, 339–48.

    Google Scholar 

  • Tease, C. and Fisher, G. (1996). Cytogenetic and genetic studies of radiation-induced chromosome damage in mouse oocytesI Numerical and structural chromosome anomalies in metaphase II oocytes, pre-and post-implantation embryos. Mutat. Res. 349, 145–53.

    Google Scholar 

  • Tsezou, A., Kitsiou-Tzeli, S., Kosmidis, K., Paidousi, K., Katsouyanni, K. and Sinaniotis, C. (1993). Constitutive heterochromatin polymorphisms in children with acute lymphoblastoid leukemia. Pediat. Hematol. Oncol. 10, 7–11.

    Google Scholar 

  • Van Den Bussche, R.A., Longmire, J.L. and Baker, R.J. (1995). How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm. Genome. 6, 521–5.

    Google Scholar 

  • Wichman, H.A., Payne, C.T., Ryder, O.A., Hamilton, M.J., Maltbie, M. and Baker, R.J. (1991). Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J. Hered. 82, 369–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiggins, L.E., Van Den Bussche, R.A., Hamilton, M.J. et al. Utility of Chromosomal Position of Heterochromatin as a Biomarker of Radiation-Induced Genetic Damage: A Study of Chornobyl Voles (Microtus sp.). Ecotoxicology 11, 147–154 (2002). https://doi.org/10.1023/A:1015466530422

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015466530422

Navigation