Skip to main content
Log in

Superoxide Dismutase and Catalase Activities in Carotenoid-Synthesizing Fungi Blakeslea trispora and Neurospora crassa Fungi in Oxidative Stress

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The addition of menadione into the medium during cultivation ofNeurospora crassa in the dark activated its constitutive superoxide dismutase. Exposure to light not only activated superoxide dismutase and catalase, but also increased the content of neurosporaxanthin. Superoxide dismutase activity in the mixed (+/–) cultures of Blakeslea trispora synthesizing β-carotene in the dark was much lower than that inNeurospora crassa. The superoxide dismutase activity and catalase activity further decreased in oxidative stress with a parallel increase in the content of β-carotene. Our results indicate that neurosporaxanthin possesses photoprotective properties in Neurospora crassa. In Blakeslea trispora (+/–) fungi, β-carotene acts as a major antioxidant during inactivation of enzymes that detoxify reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bennett, J.W., Secondary Metabolism and Differentiation in Fungi, Bennett, J.W. and Ciegler, A, Eds., New York: Marcel Dekker, 1983, pp. 1-32.

    Google Scholar 

  2. Hansberg, W. and Aguirre, J., J. Theor. Biol., 1990, vol. 142, pp. 201-221.

    Google Scholar 

  3. Anisimov, V.N., Usp. Sovrem. Biol., vol. 120, no. 2, pp. 146-164.

  4. Feofilova, E.P., Pigmenty mikroorganizmov (Microbial Pigments), Moscow: Nauka, 1974.

    Google Scholar 

  5. Ruddat, M. and Garber, E.D., Secondary Metabolism and Differentiation in Fungi, Bennett, J.W. and Ciegler, A., Eds., New York: Marcel Dekker, 1983, pp. 95-152.

    Google Scholar 

  6. Johnson, E.A. and Schroeder, W.A., Adv. Biochem. Engin. Biotechnol., 1996, vol. 53, pp. 119-175.

    Google Scholar 

  7. DeFabo, E.C., Harding, R.W., and Shropshire, W., Plant Physiol., 1976, vol. 57, pp. 440-445.

    Google Scholar 

  8. Tereshina, V.M., Kiseleva, A.I., Feofilova, E.P., and Kashporova, E.V., Mikrobiologiya, 1993, vol. 62, no. 1, p. 56.

    Google Scholar 

  9. Vogel, H.J., Nature (London), 1964, vol. 98, pp. 435-446.

    Google Scholar 

  10. Belozerskaya, T.A., Kritskii, M.S., Levina, N.N., et al., Biologicheskie Membrany, 1988, vol. 5, pp. 1081-1089.

    Google Scholar 

  11. Bannister, J.V. and Bannister, W.H., Methods Enzymology,1984, vol. 105, pp. 88-93.

  12. Kostyuk, V.A., Potapovich, A.I., and Kovaleva, Zh.V., Vopr. Med. Khimii, 1990, vol. 36, no. 2, pp. 88-91.

    Google Scholar 

  13. Eldred, G.E. and Hoffert, J.R., Anal. Biochem., 1981, vol. 110, no. 1, pp. 137-143.

    Google Scholar 

  14. Belozerskii, A.N., Prakticheskoe rukovodstvo po biokhimii rastenii (Practical Guide in Plant Biochemistry), Moscow: Sovetskaya Nauka, 1951, p. 281.

    Google Scholar 

  15. Beauchamp, C. and Fridovich, I., Anal. Biochem., 1971, vol. 44, pp. 276-287.

    Google Scholar 

  16. Lledias, S.F., Rangel, P., and Hansberg, W., J. Biol. Chem., 1998, vol. 273, no. 17, pp. 10 630-10 637.

    Google Scholar 

  17. Chary, P., Dillon, D., Schroeder, A.L., and Natvig, D.O., Genetics, 1994, vol. 137, pp. 723-730.

    Google Scholar 

  18. Natvig, D.O., Sylvester, K., Dvorachek, W.H., and Baldwin, J.L., The Mycota, Brambl, R. and Marzluf, G., Eds., Berlin: Springer, 1996, pp. 191-209.

    Google Scholar 

  19. Henry, L.E.A., Cammack, R., Schwitzguebel, J.P., et al., Biochem. J., 1980, vol. 187, pp. 321-328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gessler, N.N., Sokolov, A.V., Bykhovsky, V.Y. et al. Superoxide Dismutase and Catalase Activities in Carotenoid-Synthesizing Fungi Blakeslea trispora and Neurospora crassa Fungi in Oxidative Stress. Applied Biochemistry and Microbiology 38, 205–209 (2002). https://doi.org/10.1023/A:1015454921023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015454921023

Keywords

Navigation