Skip to main content
Log in

Thermal Conductivity of Isotopically Modified Silicon: Current Status of Research1

  • Published:
Inorganic Materials Aims and scope

Abstract

The available experimental data on the effect of isotope disorder on the thermal conductivity of solids are summarized. Particular attention is paid to analysis of recent data on the thermal conductivity of monoisotopic silicon, which are compared with earlier results and theoretical estimates of the isotope effect in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pomeranchuk, I.Ya., Thermal Conductivity of Dielectrics below Debye Temperatures, Zh. Eksp. Teor. Fiz., 1942, vol. 12, p. 245.

    Google Scholar 

  2. Klemens, P.G., The Scattering of Low-Frequency Lattice Waves by Static Imperfections, Proc. Phys. Soc. (London), 1955, vol. 68, no. 12, pp. 1113-1128.

    Google Scholar 

  3. Srivastava, G.P., The Physics of Phonons, Bristol: Adam Higer, 1990.

    Google Scholar 

  4. Berman, R., Interpretation of the Thermal Conductivity of Isotopically Depleted Diamonds, J. Phys. Chem. Solids, 1998, vol. 59, no. 8, pp. 1229-1234.

    Google Scholar 

  5. Inyushkin, A.V., Isotope Effect in Solids, in Izotopy (Isotopes). Baranov, V.Yu., Ed., Moscow: Atomizdat, 2000.

    Google Scholar 

  6. Geballe, T.H. and Hull, G.W., Isotopic and Other Types of Thermal Resistance in Germanium, Phys. Rev., 1958, vol. 110, no. 3, pp. 773-775.

    Google Scholar 

  7. Berman, R., Nettley, P.T., Sheard, F.W., et al., The Effect of Point Imperfections on Lattice Conduction in Solids, Proc. R. Soc. London, A, 1959, vol. 253, pp. 403-409.

    Google Scholar 

  8. Berman, R. and Brock, J.C.F., The Effect of Isotopes on Lattice Heat Conduction: I. Lithium Fluoride, Proc. R. Soc. London, A, 1965, vol. 289, pp. 46-65.

    Google Scholar 

  9. Callaway, J., Model for Lattice Thermal Conductivity at Low Temperatures, Phys. Rev., 1959, vol. 113, no. 4, pp. 1046-1051.

    Google Scholar 

  10. Haller, E.E., Isotopically Engineered Semiconductors, J. Appl. Phys., 1995, vol. 77, no. 7, pp. 2857-2878.

    Google Scholar 

  11. Cardona, M., Isotopic Effects in the Phonon and Electron Dispersion Relations of Crystals, Phys. Status Solidi B 2000, vol. 220, no. 1, pp. 5-18.

    Google Scholar 

  12. Zhernov, A.P. and Inyushkin, A.V., Effect of Isotopic Composition on Phonon Modes: Static Atomic Displacements in Crystals, Usp. Fiz. Nauk, 2001, vol. 171, no. 8, pp. 827-854.

    Google Scholar 

  13. Anthony, T.R., Banholzer, W.F., Fleischer, J.F., et al., Thermal Diffusivity of Isotopically Enriched 12?C Diamond, Phys. Rev. B: Condens. Matter, 1990, vol. 42, no. 2, pp. 1104-1111.

    Google Scholar 

  14. Wei, L., Kuo, P.K., Thomas, R.L., et al., Thermal Conductivity of Isotopically Modified Single Crystal Diamond, Phys. Rev. Lett., 1993, vol. 70, no. 24, pp. 3764–3767.

    Google Scholar 

  15. Slack, G.A., Nonmetallic Crystals with High Thermal Conductivity, J. Phys. Chem. Solids, 1973, vol. 34, no. 2, pp. 321-335.

    Google Scholar 

  16. Olson, J.R., Pohl, R.O., Vandersande, J.W., et al., Thermal Conductivity of Diamond between 170 and 1200 K and the Isotope Effect, Phys. Rev. B: Condens. Matter., 1993, vol. 47, no. 22, pp. 14 850-14 856.

    Google Scholar 

  17. Berman, R., Thermal Conductivity of Isotopically Enriched Diamonds, Phys. Rev. B: Condens. Matter, 1992, vol. 45, no. 10, pp. 5726-5728.

    Google Scholar 

  18. Ozhogin, V.I., Inyushkin, A.V., Taldenkov, A.N., et al., Effect of Isotopic Composition on the Thermal Conductivity of Germanium Crystals, Pis'ma Zh. Eksp. Teor.Fiz., 1996, vol. 63, no. 6, pp. 463-467.

    Google Scholar 

  19. Asen-Palmer, M., Bartkowski, K., Gmelin, E., et al., Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions, Phys. Rev. B: Condens.Matter, 1997, vol. 56, no. 15, pp. 9431-9447.

    Google Scholar 

  20. Capinski, W.S., Maris, H.J., Bauser, E., et al., Thermal Conductivity of Isotopically Enriched Si, Appl. Phys.Lett., 1997, vol. 71, no. 15, pp. 2109-2111.

    Google Scholar 

  21. Ruf, T., Henn, R.W., Asen-Palmer, M., et al., Thermal Conductivity of Isotopically Enriched Silicon, Solid State Commun., 2000, vol. 115, no. 5, pp. 243-247.

    Google Scholar 

  22. Touloukian, Y.S., Powel, R.W., Ho, C.Y., and Klemens, P.G., Thermal Conductivity-Metallic Elements and Alloys, Thermophysical Properties of Materials, Touloukian, Y.S., Ed., New York: Plenum, 1970, vol. 1.

    Google Scholar 

  23. Glassbrenner, C.J. and Slack, G.A., Thermal Conductivity of Silicon and Germanium from 3 K to the Melting Point, Phys. Rev., 1964, vol. 134, no. 4, pp. 1058-1069.

    Google Scholar 

  24. Holland, M.G. and Neuringer, L.J., The Effect of Impurities on the Lattice Thermal Conductivity of Silicon, Proc. Int. Conf. on the Physics of Semiconductors, London: Inst. of Physics and Physical Society, 1962, pp. 474-481.

    Google Scholar 

  25. Ho, C.Y., Powell, R.W., and Liley, P.E., Thermal Conductivity of the Elements, J. Phys. Chem. Ref. Data, 1972, vol. 1, no. 2, pp. 279-425.

    Google Scholar 

  26. Klitsner, T. and Pohl, R.O., Phonon Scattering at Silicon Crystal Surfaces, Phys. Rev. B: Condens. Matter, 1987, vol. 36, no. 12, pp. 6551-6565.

    Google Scholar 

  27. Hurst, W.S. and Frankl, D.R., Thermal Conductivity of Silicon in the Boundary Scattering Regime, Phys. Rev., 1969, vol. 186, no. 3, pp. 801-810.

    Google Scholar 

  28. McCurdy, A.K., Maris, H.J., and Elbaum, C., Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime, Phys. Rev. B: Solid State, 1970, vol. 2, no. 10, pp. 4077-4083.

    Google Scholar 

  29. Casimir, H.B.G., Note on the Conduction of Heat in Crystals, Physica, 1938, vol. 5, no. 6, pp. 495-500.

    Google Scholar 

  30. McSkimin, H.J. and Andreatch, P., Elastic Moduli of Silicon vs Hydrostatic Pressure at 25.0?C and -195.8?C, J. Appl. Phys., 1964, vol. 35, no. 7, pp. 2161-2165.

    Google Scholar 

  31. Klemens, P.G., Thermal Conductivity of Pure Monoisotopic Silicon, Int. J. Thermophys., 1981, vol. 2, no. 4, pp. 323-330.

    Google Scholar 

  32. Ambegaokar, V., Thermal Resistance Due to Isotopes at High Temperatures, Phys. Rev., 1959, vol. 114, no. 2, pp. 488-489.

    Google Scholar 

  33. Omini, M. and Sparavigna, A., Heat Transport in Dielectric Solids with Diamond Structure, Nuovo Cimento Soc. Ital. Fis., D, 1997, vol. 19, no. 10, pp. 1537-1563.

    Google Scholar 

  34. Capinski, W.S., Maris, H.J., and Tamura, S., Analysis of the Effect of Isotope Scattering on the Thermal Conductivity of Crystalline Silicon, Phys. Rev. B: Condens. Matter, 1999, vol. 59, no. 15, pp. 10105-10110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inyushkin, A.V. Thermal Conductivity of Isotopically Modified Silicon: Current Status of Research1 . Inorganic Materials 38, 427–433 (2002). https://doi.org/10.1023/A:1015450417350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015450417350

Keywords

Navigation