Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis

Abstract

Various topics concerning the entanglement of composite quantum systems are considered with particular emphasis concerning the strict relations of such a problem with the one of attributing objective properties to the constituents. Most of the paper deals with composite systems in pure states. After a detailed discussion and a precise formal analysis of the case of systems of distinguishable particles, the problems of entanglement and the one of the properties of subsystems of systems of identical particles are thoroughly discussed. This part is the most interesting and new and it focuses in all details various subtle questions which have never been adequately discussed in the literature. Some inappropriate assertions which appeared in recent papers are analyzed. The relations of the main subject of the paper with the nonlocal aspects of quantum mechanics, as well as with the possibility of deriving Bell's inequality are also considered.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    E. Schrödinger, Naturwissenschaften 23:807 (1935); English translation in Proc. Am. Philos. Soc. 124:323 (1980).

    Google Scholar 

  2. 2.

    D. Dürr, S. Goldstein, and N.Zanghí, J. Stat. Phys. 63:843 (1992).

    Google Scholar 

  3. 3.

    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47:777 (1935).

    Google Scholar 

  4. 4.

    P. Eberhard, Nuovo Cimento B 46:392 (1978).

    Google Scholar 

  5. 5.

    G. C. Ghirardi and T. Weber, Lettere Nuovo Cimento 26:599 (1979).

    Google Scholar 

  6. 6.

    G. C. Ghirardi, A. Rimini, and T. Weber, Lettere Nuovo Cimento 27:293 (1980).

    Google Scholar 

  7. 7.

    G. C. Ghirardi, R. Grassi, A. Rimini, and T. Weber, Europhys. Lett. 6:95 (1988).

    Google Scholar 

  8. 8.

    P. Suppes and M. Zanotti, in Logic and Probability in Quantum Mechanics, P. Suppes, ed. (Reidel, Dordrecht, 1976), p. 445.

    Google Scholar 

  9. 9.

    B. van Fraassen, Synthese 52:25 (1982).

    Google Scholar 

  10. 10.

    J. Jarrett, Noûs 18:569 (1984).

    Google Scholar 

  11. 11.

    A. Shimony, in Proceedings of the International Symposium on the Foundations of Quantum Mechanics, S. Kamefuchi et al., eds. (Physical Society of Japan, Tokyo, 1984), p. 225.

    Google Scholar 

  12. 12.

    G. C. Ghirardi, A. Rimini, and T. Weber, Nuovo Cimento B 39:130 (1977).

    Google Scholar 

  13. 13.

    G. C. Ghirardi, in Bell's Theorem and the Foundations of Modern Physics (World Scientific, Singapore, 1992).

    Google Scholar 

  14. 14.

    G. C. Ghirardi, in Waves, Information and Foundations of Physics, R. Pratesi et al., eds. (Editrice Compositori-Società Italiana di Fisica, 1998).

  15. 15.

    G. C. Ghirardi, in Spin Statistics Connection and Commutation Relations, R. C. Hilborn et al., eds. (American Institute of Physics, 2000).

  16. 16.

    P. Teller, Philosophy of Science 50:309 (1983).

    Google Scholar 

  17. 17.

    M. Readhead and P. Teller, British J. Philos. Sci. 43:201 (1992).

    Google Scholar 

  18. 18.

    M. L. Dalla Chiara and G. Toraldo di Francia, in Bridging the gap: Philosophy, Mathematics, Physics, Corsi et al., eds. (Dordrecht, Kluwer Academic Publishers, 1993), p. 261.

    Google Scholar 

  19. 19.

    N. Huggett, The Monist 80:118 (1997).

    Google Scholar 

  20. 20.

    D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Quantum Interferometry: Proceedings of an Adriatico Workshop, F. de Martini et al., eds. (Trieste, 1996).

  21. 21.

    A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. 2, p. 600.

    Google Scholar 

  22. 22.

    G. Krenn and A. Zeilinger, Phys. Rev. A 54:1793 (1996).

    Google Scholar 

  23. 23.

    D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic Publishers, 1989).

  24. 24.

    G. C. Ghirardi, in Dynamical Systems and Microphysics, A. Blaquiere et al., eds. (Springer-Verlag, 1980).

  25. 25.

    M. Horne, A. Shimony and A. Zeilinger, in Quantum Coherence, J. S. Anandan, ed. (World Scientific, Singapore, 1991).

    Google Scholar 

  26. 26.

    R. F. Werner, Phys. Rev. A 40:4277 (1989).

    Google Scholar 

  27. 27.

    M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223:1 (1996).

    Google Scholar 

  28. 28.

    A. Peres, Phys. Rev. Lett. 77:1413 (1996).

    Google Scholar 

  29. 29.

    S. Teufel, K. Berndl, D. Dürr, S. Goldstein, and N. Zanghí, Phys. Rev. A 56:1217 (1997).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghirardi, G., Marinatto, L. & Weber, T. Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis. Journal of Statistical Physics 108, 49–122 (2002). https://doi.org/10.1023/A:1015439502289

Download citation

  • entanglement
  • identical particles