Skip to main content
Log in

Ammonia and carbon dioxide permeability through perfluorosulfonic membranes

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Transmembrane transport of ammonia and carbon dioxide through perfluorosulfonic membranes in ionic forms of transition metals was studied in a wide temperature interval. The different patterns of the temperature plots of the permeability coefficient of ammonia were found for different ionic forms of the membrane. An increase in the ammonia permeability with an increase in the moisture contents of the membrane also depends on its ionic form. The effects observed are explained by the different structures of water—ammonia complexes formed with metal ions. The mechanism of transmembrane transport of ammonia through perfluorosulfonic membranes in various ionic forms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Churakov, S. L. Ioffe, and V. A. Tartakovsky, Mendeleev Commun., 1991, 101.

  2. A. M. Churakov, O. Yu. Smirnov, Yu. A. Strelenko, S. L. Ioffe, V. A. Tartakovsky, Yu. T. Struchkov, F. M. Dolgushin, and A. I. Yanovsky, Mendeleev Commun., 1994, 122.

  3. A. M. Churakov, O. Yu. Smirnov, Yu. A. Strelenko, S. L. Ioffe, V. A. Tartakovsky, Yu. T. Struchkov, F. M. Dolgushin, and A. I. Yanovsky, Mendeleev Commun., 1996, 22.

  4. A. E. Frumkin, A. M. Churakov, Yu. A. Strelenko, V. V. Kachala, and V. A. Tartakovsky, Org. Lett., 1999, 1, 721.

    Google Scholar 

  5. E. T. Apasov, A. M. Churakov, Yu. A. Strelenko, S. L. Ioffe, and V. A. Tartakovsky, Tetrahedron, 1995, 51, 6775.

    Google Scholar 

  6. A. M. Churakov, O. Yu. Smirnov, S. L. Ioffe, Yu. A. Strelenko, and V. A. Tartakovsky, Izv. Akad. Nauk, Ser. Khim., 1994, 1620 [Russ. Chem. Bull., 1994, 43, 1532 (Engl. Transl.)].

    Google Scholar 

  7. R. C. Zawalsky and P. Kovacic, J. Org. Chem., 1979, 44, 2130.

    Google Scholar 

  8. F. B. Mallory, K. E. Schueller, and C. S. Wood, J. Org. Chem., 1961, 26, 3312.

    Google Scholar 

  9. M. J. Mijs, S. E. Hoekstra, R. M. Ulmann, and E. Halinga, Rec. Trav. Chim. Pays-Bas, 1958, 77, 746.

    Google Scholar 

  10. R. R. Holmes and R. P. Bayer, J. Am. Chem. Soc., 1960, 82, 3454.

    Google Scholar 

  11. A. E. Frumkin, A. M. Churakov, Yu. A. Strelenko, and V. A. Tartakovsky, Izv. Akad. Nauk, Ser. Khim., 1999, 2126 [Russ. Chem. Bull., 1999, 48, 2103 (Engl. Transl.)].

    Google Scholar 

  12. S. G. Zlotin and O. A. Luk´yanov, Usp. Khim., 1993, 62, 157 [Russ. Chem. Rev., 1993, 62, 143 (Engl. Transl.)].

    Google Scholar 

  13. M. Hudlicky, Reduction in Organic Chemistry, Wiley, New York, 1984.

    Google Scholar 

  14. M. J. Kornet, W. Beaven, and T. Varia, J. Heterocycl. Chem., 1985, 22, 1089.

    Google Scholar 

  15. W. Gottardi, Monatsh. Chem., 1973, 104, 1681.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobiev, A.V., Beckman, I.N. Ammonia and carbon dioxide permeability through perfluorosulfonic membranes. Russian Chemical Bulletin 51, 275–281 (2002). https://doi.org/10.1023/A:1015403626398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015403626398

Navigation