Skip to main content
Log in

Characterization of Oxides Formed on InP, InGaAs, InAlAs, and InGaAs/InAlAs Heterostructures at 300–500°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The nature and composition of oxides formed on InP, InGaAs, InAlAs, and on InGaAs/InAlAs heterostructures, both in planar and lateral configurations, was studied at temperatures in the range 300–500°C. These materials were oxidized in either oxygen, or moist air [air passed through water at 25 or 95°C; so-called “moist air (25°C)” or “moist air (95°C)”], or in moist N2 (N2 passed through water at 95°C; so called “moist N2”) for times from 5 to 960 min. Under these conditions, oxide film thicknesses ranged from 5 Å to about 1 μm. The oxide films on InP were composed of In2O3, InPO3, and P4O10, with InPO3 being the predominant phase. The In2O3 content of the films varied with temperature, oxidation time, and oxidation conditions. For example, for InP in oxygen, the amount of this oxide decreased with temperature and time. At 450°C, the amount of In2O3 decreased markedly for oxidation in moist air (95°C) and even more so for oxidation in moist N2. Oxide films produced on InGaAs appeared to be composed mainly of a mixed oxide (Ga,In)2O3, with the In content being predominant. The oxide produced on InAlAs was composed mainly of In2O3 and Al2O3, with the amount of the latter tending to increase with increasing temperature. It was found that at 400 to 500°C, InAlAs did not oxidize much faster than InGaAs or InP in moist air (25°C) or in moist air (95°C). In moist N2, however, InAlAs was preferentially oxidized by a factor of five to ten over InP and InGaAs. In InAlAs/InGaAs heterostructures on InP substrates, used in heterojunction bipolar transitors (HBTs), InAlAs was even more strongly preferentially oxidized; the ratio of oxide thicknesses InP:InGaAs:InAlAs being 1:1:80. This is encouraging for forming Al2O3-containing oxide layers in device structures to try to improve device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces (Plenum Press, New York, 1985).

    Google Scholar 

  2. D. N. Butcher and B. J. Sealy, J. Phys. D: Appl. Phys. 11, 1451 (1978).

    Google Scholar 

  3. R. Beserman, S. A. Schwarz, D. M. Hwang, and C. Y. Chen, Phys. Rev. B. 44, 3025 (1991).

    Google Scholar 

  4. T. Ishikawa and H. Ikoma, Jpn. J. Appl. Phys. 31, 3981 (1992).

    Google Scholar 

  5. K. Smedalin, G. Zhang, and J. Lammasniemi, J. Electroc. Soc. 141, L97 (1994).

    Google Scholar 

  6. P. Schmuki, R. J. Hussey, G. I. Sproule, Y. Tao, Z. R. Wasilewski, J. P. McCaffrey, and M. J. Graham, Corros. Sci. 41, 1467 (1999).

    Google Scholar 

  7. F. A. Kish, S. J. Caracci, N. Holonyak, Jr., K. C. Hsieh, J. E. Baker, S. A. Maranowski, A. R. Sugg, J. M. Dallesasse, R. M. Fletcher, C. P. Huo, T. D. Osentowski, and M. G. Crawford, J. Electron. Mater. 21, 1133 (1992).

    Google Scholar 

  8. U. K. Mishra, P. Parikh, P. Charvarkar, J. Yen, J. Champlain, B. Thibeault, H. Reese, S. S. Shi, E. Lu, L. Zhu, and J. Specl, IEDM'97, 21.1.1.

  9. P. Schmuki, G. I. Sproule, J. A. Bardwell, Z. H. Lu, and M. J. Graham, J. Appl. Phys. 79, 7303 (1996).

    Google Scholar 

  10. H. Gebretsadik, K. Kamath, W.-D. Zhou, P. Bhattacharya, C. Caneau, and R. Bhat, Appl. Phys. Lett. 72, 135 (1998).

    Google Scholar 

  11. P. A. Grudowski, R. V. Chelakara and R. D. Dupuis, Appl. Phys. Lett. 69, 388 (1996).

    Google Scholar 

  12. M. Yamaguchi and K. Ando, J. Appl. Phys. 51, 5007 (1980).

    Google Scholar 

  13. D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham, Oxid. Met. 14, 279 (1980).

    Google Scholar 

  14. N. Shibata and H. Ikoma, Jpn. J. Appl. Phys. 31, 3976 (1992).

    Google Scholar 

  15. A. Pakes, P. Skeldon, G. E. Thompson, S. Moisa, G. I. Sproule, and M. J. Graham, Corros. Sci., accepted for publication.

  16. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp., 1992).

  17. M. Faur, D. T. Jayne, and M. Goradia, Surf. and Interf. Anal., 15, 641 (1990).

    Google Scholar 

  18. R. J. Hussey, G. I. Sproule, and M. J. Graham, Proc. 27th State-of-the-Art Program on Compound Semiconductors (SOTAPOCS XXVII) Vol. 97–21 (The Electrochem. Soc., Paris, 1997), p. 305.

    Google Scholar 

  19. R. J. Hussey, G. I. Sproule, J. P. McCaffrey, R. Driad, Z. R. Wasilewski, P. J. Poole, D. Landheer, and M. J. Graham, Proc. Int. Symp. High-Temp. Corros. Protection 2000, p.39 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussey, R.J., Sproule, G.I., McCaffrey, J.P. et al. Characterization of Oxides Formed on InP, InGaAs, InAlAs, and InGaAs/InAlAs Heterostructures at 300–500°C. Oxidation of Metals 57, 427–447 (2002). https://doi.org/10.1023/A:1015396204143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015396204143

Navigation