Skip to main content
Log in

Chemical Composition and Structure–Vacancy Disordering in Ag–Au, Cu–Au, Ag–Pd, and Cu–Pd Alloys as Factors of Their Electrocatalytic Activity

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The oxalic acid electrooxidation kinetics is studied at polycrystalline electrodes of vacancy-disordered Au* and Pd* obtained by anodically modifying in 0.5 M H2SO4 the surface of Ag–Au, Cu–Au, Ag–Pd, and Cu–Pd alloys containing no less than 50 at. % of the noble metal. It is found that a qualitative correlation exists between variations in thermodynamic and electrocatalytic activities of both Au* and Pd* following a change in the surface concentration of vacancies in alloys of constant composition and in the volume concentration of the electronegative component in alloys with approximately identical concentrations of vacancies. Such a correlation may be due to the existence of some factor through which an anodically-modified alloy affects the electrocatalytic process. The factor, presumably the alloy's electronic structure, is more generic than the alloy's volume composition, the nature of components, and the vacancy concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pickering, H.W. and Wagner, C., J. Electrochem. Soc., 1967, vol. 114, p. 698.

    Google Scholar 

  2. Losev, V.V. and Pchel'nikov, A.P., Itogi Nauki Tekh., Ser.: Elektrokhimiya, 1979, vol. 19, p. 62.

    Google Scholar 

  3. Marshakov, I.K., Vvedenskii, A.V., Kondrashin, V.Yu., and Bokov, G.A., Anodnoe rastvorenie i selektivnaya korroziya splavov (Anodic Dissolution and Selective Corrosion of Alloys), Voronezh: Voronezh. Gos. Univ., 1988, p. 208.

    Google Scholar 

  4. Kaiser, H., Chemical Industries, vol. 28: Corrosion Mechanism, New York: Marcel Dekker, 1987, p. 85.

    Google Scholar 

  5. Vvedenskii, A.V., Elektrokhimiya, 1991, vol. 27, p. 256.

    Google Scholar 

  6. Vvedenskii, A.V. and Marshakov, I.K., Electrochim. Acta, 1991, vol. 36, p. 905.

    Google Scholar 

  7. Vvedenskii, A.V. and Marshakov, I.K., Elektrokhimiya, 1998, vol. 34, p. 637.

    Google Scholar 

  8. Skundin, A.M., Itogi Nauki Tekh., Ser.: Elektrokhimiya, 1982, vol. 18, p. 228.

    Google Scholar 

  9. Johnson, J.W., Mueller, S.C., and James, W.J., Trans. Faraday Soc., 1971, vol. 67, p. 2167.

    Google Scholar 

  10. Sargisyan, S.A. and Vassiliev, Yu.B., Elektrokhimiya, 1981, vol. 17, p. 1495.

    Google Scholar 

  11. Sargisyan, S.A. and Vassiliev, Yu.B., Elektrokhimiya, 1982, vol. 18, p. 945.

    Google Scholar 

  12. Sargisyan, S.A. and Vassiliev, Yu.B., Elektrokhimiya, 1982, vol. 18, p. 845.

    Google Scholar 

  13. Sargisyan, S.A. and Vassiliev, Yu.B., Elektrokhimiya, 1982, vol. 18, p. 961.

    Google Scholar 

  14. Albalat, R., Gomez, E., Sarret, M., and Valles, E., Monatsch. Chem., 1989, vol. 120, p. 651.

    Google Scholar 

  15. Horanyi, G., Vertes, G., and Hedus, D., Acta Chim. Hung., 1973, vol. 79, p. 301.

    Google Scholar 

  16. Smirnova, N.V., Tsirlina, G.A., Pron'kin, S.N., and Petrii, O.A., Elektrokhimiya, 1999, vol. 35, p. 119.

    Google Scholar 

  17. Morozova, N.B., Shcheblykina, G.E., and Vvedenskii, A.V., Elektrokhimiya, 1999, vol. 35, p. 337.

    Google Scholar 

  18. Vvedenskii, A.V., Anokhina, I.V., and Marshakov, I.K., Zashch. Met., 1988, vol. 24, p. 174.

    Google Scholar 

  19. Vvedenskii, A.V., Bobrinskaya, E.V., Marshakov, I.K., and Storozhenko, V.N., Zashch. Met., 1993, vol. 29, p. 560.

    Google Scholar 

  20. Shcheblykina, G.E., Bobrinskaya, E.V., and Vvedenskii, A.V., Elektrokhimiya, 1998, vol. 34, p. 844.

    Google Scholar 

  21. Vvedenskii, A.V., Bokov, G.A., and Stol'nikov, O.F., Zashch. Met., 1990, vol. 26, p. 921.

    Google Scholar 

  22. Vvedenskii, A.V., Storozhenko, V.N., and Marshakov, I.K., Zashch. Met., 1993, vol. 29, p. 693.

    Google Scholar 

  23. Vvedenskii, A.V., Marshakov, I.K., and Storozhenko, V.N., Elektrokhimiya, 1994, vol. 30, p. 459.

    Google Scholar 

  24. Larikov, L.N. and Isaichev, V.I., Diffuziya v metallakh i splavakh (Diffusion in Metals and Alloys), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  25. Geguzin, Ya.E., Diffuzionnaya zona (The Diffusion Layer), Moscow: Nauka, 1979.

    Google Scholar 

  26. Bokshtein, S.Z., Stroenie i svoistva metallicheskikh splavov (Structure and Properties of Metal Alloys), Moscow: Metallurgiya, 1971.

    Google Scholar 

  27. Damask, A.C. and Dienes, G.J., Point Defects in Metals, New York: Gordon and Breach, 1963.

    Google Scholar 

  28. Shalaev, A.M., Radiatsionno–stimulirovannye protsessy v metallakh (Radiation–Induced Processes in Metals), Moscow: Energoizdat, 1988.

    Google Scholar 

  29. Orlov, A.N. and Trushin, Yu.V., Energii tochechnykh defektov v metallakh (Energies of Point Defects in Metals), Moscow: Energoizdat, 1983.

    Google Scholar 

  30. Zartsyn, I.D., Vvedenskii, A.V., and Marshakov, I.K., Elektrokhimiya, 1994, vol. 30, p. 544.

    Google Scholar 

  31. Zartsyn, I.D., Vvedenskii, A.V., and Marshakov, I.K., Zashch. Met., 1991, vol. 27, p. 3.

    Google Scholar 

  32. Zartsyn, I.D., Vvedenskii, A.V., and Marshakov, I.K., Zashch. Met., 1992, vol. 28, p. 355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vvedenskii, A.V., Morozova, N.B. & Shcheblykina, G.E. Chemical Composition and Structure–Vacancy Disordering in Ag–Au, Cu–Au, Ag–Pd, and Cu–Pd Alloys as Factors of Their Electrocatalytic Activity. Russian Journal of Electrochemistry 38, 389–397 (2002). https://doi.org/10.1023/A:1015387804900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015387804900

Keywords

Navigation