Skip to main content
Log in

Atomic Force Microscopic Studies of Porous TiO2 Thin Films Prepared by the Sol-Gel Method

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Porous titanium dioxide thin films were prepared from alkoxide solutions with and without polyethylene glycol (PEG) by the sol-gel method on soda-lime glass. The effects of PEG addition to the precursor solution on the microstructure and roughness of the resultant thin films were investigated by atomic force microscopy (AFM). It was found that TiO2 films prepared from the precursor solution without PEG had granular microstructure and flat texture, and was composed of about 100 nm spherical particles. With an increase in the times of coating cycles, the roughness of films decreased and the size of TiO2 particles increased. On the other hand, the larger the amount and molecular weight of the added PEG in precursor solutions, the larger the diameter and the depth of pores in the resultant films on the decomposition of PEG during heat-treatment. The surface of the films was also rougher, and fewer pores were produced during heat-treatment. The mechanism of porous structure formation in the TiO2 films was explained using the principle of spinodal phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).

    Google Scholar 

  2. J.G. Yu, X.J. Zhao, and Q.N. Zhao, Thin Solid Films 379, 7 (2000).

    Google Scholar 

  3. Y.M. Gao, H.S. Shen, K. Dwight, and A. Word, Mater. Res. Bull. 27, 1023 (1992).

    Google Scholar 

  4. H. Kuster and J. Ebert, Thin Solid Films A 70, 43 (1980).

    Google Scholar 

  5. H.K. Pulker, Thin Film Science and Technology. Vol. 6 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  6. B.O. Regan and M. Gratzel, Nature, 353, 737 (1991).

    Google Scholar 

  7. L. Kavan, K. Kratochvilova, and M. Gratzel, J. Electroanal. Chem. 394, 93 (1995).

    Google Scholar 

  8. H.M. Lin, C.H. Keng, and C.Y. Tung, Nanostructured Mater. 9, 747 (1997).

    Google Scholar 

  9. J.G. Yu, X.J. Zhao, J. Ch. Du, and W.M. Chen, J. Sol-Gel Sci. Tech. 17, 163 (2000).

    Google Scholar 

  10. S. Zhang, Y.F. Zhu, and D.E. Brodie, Thin Solid Films 213, 265 (1992).

    Google Scholar 

  11. K.L. Siefering and G.L. Griffin, J. Electrochem. Soc. 137, 1206 (1990).

    Google Scholar 

  12. A.P. Xagas, E. Androulaki, A. Hiskia, and P. Falaras, Thin Solid Films 357, 173 (1999).

    Google Scholar 

  13. L. Wicikowski, B. Kusz, L. Murawski, K. Szaniawska, and B. Susla, Vacuum 54, 221 (1999).

    Google Scholar 

  14. N. Negishi, K. Takeuchi, and T. Ibusuki, J. Mater. Sci. 33, 5789 (1998).

    Google Scholar 

  15. N. Negishi, K. Takeuchi, T. Ibusuki, and A.K. Datye, J. Mater. Sci. Lett. 18, 515 (1999).

    Google Scholar 

  16. M. Anast, A. Jamting, J.M. Bell, and B. Ben-Nissan, Thin Solid Films 253, 303 (1994).

    Google Scholar 

  17. K. Kato, A. Tsuzuki, Y. Torii, H. Taoda, T. Kato, and Y. Butsugan, J. Mater. Sci. 30, 837 (1995).

    Google Scholar 

  18. T.P. Niesen, M.R. De Guire, J. Bill, F. Aldinger, M. Ruhle, A. Fischer, F.C. Jentoft, and R. Schlogl, J. Mater. Res. 14, 2464 (1999).

    Google Scholar 

  19. J.G. Yu, X.J. Zhao, and Q.N. Zhao, J. Mater. Sci. Lett. 19, 1015 (2000).

    Google Scholar 

  20. M.P. Valkonen, S. Lindroos, T. Kanniainen, M. Leskela, R. Resch, G. Friedbacher, and M. Grasserbauer, J. Mater. Res. 13, 1688 (1998).

    Google Scholar 

  21. K. Nakanishi and N. Soga, J. Non-Cryst. Solids 139, 1 (1992).

    Google Scholar 

  22. K. Nakanishi and N. Soga, J. Non-Cryst. Solids 139, 14 (1992).

    Google Scholar 

  23. K. Nakanishi and N. Soga, J. Non-Cryst. Solids 142, 36 (1992).

    Google Scholar 

  24. K. Nakanishi and N. Soga, J. Non-Cryst. Solids 142, 45 (1992).

    Google Scholar 

  25. P.G. de Gennes, Scaling Concept in Polymer Physics (Cornell University Press. Ithaca, NY, 1979).

    Google Scholar 

  26. J.W. Cahn and R.J. Charles, Phys. Chem. Glasses 6, 181 (1965).

    Google Scholar 

  27. K. Kajihara, K. Nakanishi, K. Tanaka, K. Hirao, and N. Soga, J. Am. Ceram. Soc. 81, 2670 (1998).

    Google Scholar 

  28. S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, Polymer 17, 685 (1976).

    Google Scholar 

  29. A. Kagemoto, S. Murakami, and R. Fujishiro, Macromol. Chem. 105, 154 (1967).

    Google Scholar 

  30. A. Kagemoto, Y. Itoi, Y. Baba, and R. Fujishiro, Macromol. Chem. 150, 255 (1971).

    Google Scholar 

  31. J.G. Yu, X.J. Zhao, Q.N. Zhao, and G. Wang, Mater. Chem. Phys. 68, 253 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Yu, J.C., Cheng, B. et al. Atomic Force Microscopic Studies of Porous TiO2 Thin Films Prepared by the Sol-Gel Method. Journal of Sol-Gel Science and Technology 24, 229–240 (2002). https://doi.org/10.1023/A:1015384624389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015384624389

Navigation