Skip to main content
Log in

Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline titania films were prepared by a complexing agent-assisted sol-gel dip-coating process. The effect of acetylacetone, diethanolamine and polyethylene glycol on the structure of the heat-treated titania films was examined by Raman and FTIR spectroscopy and X-ray diffraction. The effect the complexing agents have on the anatase to rutile phase transition during the heat treatment process is studied. The understanding of this effect is expected to enhance our capacity to tailor the composition and morphology of films and thus their properties. The Raman and the infrared spectra of nanocrystalline titania films and the changes induced by the heat treatment were also investigated. We have also studied the size of the crystallites in TiO2 films and its dependence on the type of complexing agent used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Bennett, E. Pelletier, G. Albrand, et al., Appl. Opt. 28, 3303 (1989).

    Google Scholar 

  2. S.B. Desu, Mater. Sci. Eng. B 13, 299 (1992).

    Google Scholar 

  3. M. Gratzel, Comment. Inorg. Chem. 12, 93 (1991).

    Google Scholar 

  4. P. Lobl, M. Huppertz, and D. Mergel, Thin Solid Films 251, 72 (1994).

    Google Scholar 

  5. H.K. Ha, M. Yosimoto, H. Koinuma, B. Moon, and H. Ishiwara, Appl. Phys. Lett. 68, 2965 (1996).

    Google Scholar 

  6. C. Natarajan and G. Nogami, J. Electrochem. Soc. 143, 1547 (1996).

    Google Scholar 

  7. Y. Djaoued, S. Badilescu, P.V. Ashrit, D. Bersani, P.P. Lottici, and R. Bruning., to be published.

  8. L. Gao, Q. Li, Z. Song, and J. Wang, Sensors and Actuators B 71, 179 (2000).

    Google Scholar 

  9. Y. Takao, Y. Iwanaga, M. Shimizu, Egashira, Sensors and Actuators B 10, 229 (1993).

    Google Scholar 

  10. U. Kimer, K.D. Schierbaum, W. Gopel, B. Leibold, N. Nicoloso, W. Weppner, D. Fisher, and F. Chu, Sensors and Actuators B 1, 103 (1990).

    Google Scholar 

  11. G. Sberveglieri, L.E. Depero, M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, C. Perego, and L. Sangaletti, Adv.Mater. 8, 334 (1996).

    Google Scholar 

  12. A. Hagfield, N. Vlachopoulos, and M. Gratzel, J. Electrochem. Soc. L 82 (1994).

  13. Y. Djaoued, S. Badilescu, R. Taj, R. Brüening, P.V. Ashrit, G. Bader, and Vo-Van Truong, Schriften des Forschungszentrums Jülich, Series Energy Technology 15, 657 (2000).

    Google Scholar 

  14. Chu-Chi Ting and San-Yuan Chen, J. Mater. Res. 16(6), 1712 (2001).

    Google Scholar 

  15. H. Zhang and J.F. Banfield, J.Mater.Res. 15(2), 437 (2000).

    Google Scholar 

  16. H.Z. Zhang and J.F. Banfield, J. Mater. Chem. 8(9), 2073 (1998).

    Google Scholar 

  17. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, Reading, Massachusetts, 1959).

    Google Scholar 

  18. S. Music, M. Gotic, M. Ivanda, S. Popovic, A. Turkovic, R. Trojko, A. Sekulic, and K. Furic, Mat. Sci. and Eng. B 47, 33 (1997).

    Google Scholar 

  19. T. Ivanova and A. Harizonova, Solid State Ionics 138, 227 (2001).

    Google Scholar 

  20. P. M.Kumar, S. Badrinarayanan, and M. Sastry, Thin Solid Films 358,122 (2000).

    Google Scholar 

  21. M. Burgos and M. Langlet, Thin Solid Films 349, 19 (1999).

    Google Scholar 

  22. K. Kato and K. Niihara, Thin Solid Films 298, 76 (1997).

    Google Scholar 

  23. Y. Djaoued, R. Taj, R. Brüening, S. Badilescu, P.V. Ashrit, G. Bader, and Vo-Van Truong, J. Non-Cryst. Solids 297, 55 (2002).

    Google Scholar 

  24. Y. Takahashi and Y. Matsuoka, J. Mater. Sci. 23, 2259 (1988).

    Google Scholar 

  25. Y. Iida, M. Furukawa, K. Kato, and H. Morikawa, Appl. Spectrosc. 51, 673 (1997).

    Google Scholar 

  26. D. Bersani, P.P. Lottici, and Xing-Zhao Ding, Appl. Phys. Lett. 72(1), 73 (1998).

    Google Scholar 

  27. H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

    Google Scholar 

  28. I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).

    Google Scholar 

  29. D.R. Dos Santos and I.L. Torriani, Solid State Commun. 85, 307 (1993).

    Google Scholar 

  30. D. Bersani and P.P. Lottici, Phys. Status Solidi B 174, 575 (1992).

    Google Scholar 

  31. A. Tu and P.D. Persans, Appl. Phys. Lett. 58, 1506 (1991).

    Google Scholar 

  32. C.E. Bottani, C. Mantini, P. Milani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, Appl. Phys. Lett. 69, 2409 (1996).

    Google Scholar 

  33. M.H. Lee and B.C. Choi, J. Am. Ceram. Soc. 74, 2309 (1991).

    Google Scholar 

  34. Y.S. Bobovich and M.Y. Tsenter, Opt. Spectrosc. 53, 332 (1982).

    Google Scholar 

  35. T. Ohsaka, S. Yamahoka, and O. Shimomura, Solid State Commun. 30, 345 (1979).

    Google Scholar 

  36. A.G. Gaynor, R.J. Gonzalez, R.M. Davis, and R. Zallen, J. Matter. Res. 12, 1755 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djaoued, Y., Badilescu, S., Ashrit, P. et al. Study of Anatase to Rutile Phase Transition in Nanocrystalline Titania Films. Journal of Sol-Gel Science and Technology 24, 255–264 (2002). https://doi.org/10.1023/A:1015357313003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015357313003

Navigation