Skip to main content
Log in

Okadaic Acid Increases ARNT Homodimer Transactivation Potential

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The human aryl hydrocarbon nuclear translocator (hARNT) protein belongs to the family of basic helix-loop-helix (bHLH) PAS transcription factors and regulates a range of cellular processes by either homodimerizing or heterodimerizing with other bHLH-PAS proteins. hARNT has been shown to be almost exclusively phosphorylated on serine residues. However, regulation of hARNT with respect to phosphorylation remains poorly understood. The phosphatase inhibitor okadaic acid was used to explore whether a change in hARNT phosphorylation status could influence hARNT homodimer activity. The hARNT homodimer has been shown to bind to E boxes and E-box binding factors are believed to be important in the regulation of cell differentiation and proliferation. Okadaic acid significantly increased hARNT-mediated class B, E-box-driven reporter activity in COS-1 cells, transiently expressing hARNT without affecting hARNT protein levels. This alteration in hARNT-mediated class B, E-box-driven reporter activity correlates with an observed increase in [32P]orthophosphate incorporation into hARNT. Treatment with okadaic acid resulted in a 12-fold increase in [32P]orthophosphate incorporation into hARNT that was transiently expressed in COS-1 cells; an increase in the number of tryptic phosphopeptides generated from hARNT digests on two-dimensional phosphopeptide maps was also observed. Despite the significant increase in [32P]orthophosphate incorporation into hARNT, serine remained the predominantly phosphorylated residue. Clearly, increased serine phosphorylation does not appear to negatively regulate hARNT homodimerization or transactivation potential. These results demonstrate that increased hARNT homodimer signaling in COS-1 cells may result from a direct change in hARNT phosphorylation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonsson C, Arulampalam V, Whitelaw ML, Pettersson S, Poellinger L.Constitutive function of the basic helix-loop-helix/PAS factor Arnt.Regulation of target promoters via the E box motif.J Biol Chem. 1995:270:13968–72.

    Article  PubMed  CAS  Google Scholar 

  • Bialojan C, Takai A.Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases.Specificity and kinetics.Biochem J. 1988:256:283–90.

    PubMed  CAS  Google Scholar 

  • Berghard A, Gradin K, Pongratz I, Whitelaw M, Poellinger L.Cross-coupling of signal transduction pathways: the dioxin receptor mediates induction of cytochrome P-4501AI expression via a protein kinase C-dependent mechanism.Mol Cell Biol. 1993:13:677–89.

    PubMed  CAS  Google Scholar 

  • Boyle WJ, Van Der Geer P, Hunter T.Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates.Methods Enzymol. 1991;201:110–49

    PubMed  CAS  Google Scholar 

  • Brewis ND, Street AJ, Prescott AR, Cohen PT.PPX, a novel protein serine/threonine phosphatase localized to centrosomes.EMBO J. 1993:12:987-96.

    PubMed  CAS  Google Scholar 

  • Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM, Cohen PT.A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus.EMBO J. 1994:15: 4278–90.

    Google Scholar 

  • Cohen P.The structure and regulation of protein phosphatases.Annu Rev Biochem. 1989:68:453–508.

    Article  Google Scholar 

  • Cohen P.Classification of protein-serine/threonine phosphatases: identification and quantitation in cell extracts.Methods Enzymol. 1991:201:389–98.

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Cohen PTW.Protein phosphatases come of age.J Biol Chem. 1989;264:21435–8.

    PubMed  CAS  Google Scholar 

  • Denison MS, Fisher JM, Whitlock JP Jr.Protein-DNA interactions at recognition sites for the dioxin-Ah receptor complex.J Biol Chem. 1989:264:16478–82.

    PubMed  CAS  Google Scholar 

  • Dorshkind K.Transcriptional control points during lymphopoiesis.Cell. 1994:79:751–3.

    Article  PubMed  CAS  Google Scholar 

  • Drutel G, Kathmann M, Heron A, Schwartz JC, Arrang JM.Cloning and selective expression in brain and kidney of ARNT2 homologous to the Ah receptor nuclear translocator (ARNT).Biochem Biophys Res Commun. 1996;225: 333–9.

    Article  PubMed  CAS  Google Scholar 

  • Drutel G, Heron A, Kathmann M, et al.ARNT2, a transcription factor for brain neuron survival? Eur J Neurosci. 1999; 11:1545–53.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Nebert DW.Autoregulation plus upstream positive and negative control regions associated with transcriptional activation of the mouse PI (450) gene.Nucleic Acids Res. 1985:25:7269–88.

    Google Scholar 

  • Gu YZ, Hogenesch JB, Bradfield CA.The PAS superfamily: sensors of environmental and developmental signals.Annu Rev Pharmacol Toxicol. 2000:40:519–61.

    Article  PubMed  CAS  Google Scholar 

  • Guillemin K, Krasnow MA.The hypoxic response: huffing and HIFing.Cell. 1997:89:9–12.

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Seth A, Davis RJ.Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62.Proc Nati Acad Sci USA.1993:90:3216–20.

    Article  CAS  Google Scholar 

  • Hankinson O.The aryl hydrocarbon receptor complex.Adv Enzyme Regul. 1995:34:159-71.

    Article  Google Scholar 

  • Hoffman EC, Reyes H, Chu FF, et al.Cloning of a factor required for activity of the Ah (dioxin) receptor.Science.1991:252:954–8.

    PubMed  CAS  Google Scholar 

  • Hord NG, Perdew G.Physicochemical and immunocyto-chemical analysis of the aryl hydrocarbon receptor nuclear translocator: characterization of two monoclonal antibodies to the aryl hydrocarbon receptor nuclear translocator.Mol Pharmacol. 1994:46:618–26.

    PubMed  CAS  Google Scholar 

  • Israel Dl, Estolano MG, Galeazzi DR, Whitlock JP.Super-induction of cytochrome PI-450 gene transcription by inhibition of protein synthesis in wild type and variant mouse hepatoma cells.J Biol Chem. 1985:260:5648–53.

    PubMed  CAS  Google Scholar 

  • Jan YN, Jan LY.HLH proteins, fly neurogenesis, and vertebrate myogenesis.Cell.1993:75:827–30.

    Article  PubMed  CAS  Google Scholar 

  • Kadesch T.Consequences of heteromeric interactions among helix-loop-helix proteins.Cell Growth Differ. 1993:4:49–55.

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Numayama-Tsuruta K, Sogawa K, Fuji-kuriya-ma Y.CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt).J Biochem (Tokyo).1997:122:703–10.

    CAS  Google Scholar 

  • Long WP, Chen X, Perdew GH.Protein kinase C modulates aryl hydrocarbon receptor nuclear translocator protein-mediated transactivation potential in a dimer context.J Biol Chem. 1999:274:12391–2400.

    Article  PubMed  CAS  Google Scholar 

  • Levine SL, Perdew GH.Aryl hydrocarbon receptor/Aryl hydrocarbon receptor nuclear translocator activity is unaltered by phosphorylation of a periodicity/aryl hydro-carbon receptor nuclear translocator/single-minded-region serine residue.Mol Pharmacol. 2001:59:557–66.

    PubMed  CAS  Google Scholar 

  • Li S, Dougherty JJ.Inhibitors of serine/threonine-specific protein phosphatases stimulate transcription by the Ah Receptor/ARNT dimer by affecting a step subsequent to XRE binding.Arch Biochem Biophys. 1997:340:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Lusska A, Wu L, Whitlock JP.Superinduction of CYPIAI transcription by cycloheximide.Role of the DNA binding site for the liganded Ah receptor.J Biol Chem. 1992;267: 15146–51.

    PubMed  CAS  Google Scholar 

  • Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC.Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT.Nature.1997:386:403–7.

    Article  PubMed  CAS  Google Scholar 

  • Michaud JL, DeRossi C, May NR, Holdener BC, Fan CM.ARNT2 acts as the dimerization partner of SIM I for the development of the hypothalamus.Mech Dev. 2000:90:253–61.

    Article  PubMed  CAS  Google Scholar 

  • Roach PJ.Multisite and hierarchical protein phosphorylation.J Biol Chem. 1991:266:14139–42.

    PubMed  CAS  Google Scholar 

  • Rowan BG, Garrison N, Weigel NL, O'Malley BW.8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-I that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-I and CREB binding protein.Mol Cell Biol. 2000:23:8720–30.

    Article  Google Scholar 

  • SAS.SAS Users guide, version 8 edition.Gary, NC: SAS Institute Inc.; 1999.

  • Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA.Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development.Proc Natl Acad Sci USA.1996:93:6731–6.

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Jiang BH, Semenza GL.Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1.Biochem Biophys Res Commun. 1995; 216:669–75.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H.The MyoD family and myogenesis: redundancy, networks, and thresholds.Cell. 1993:75:1241–4.

    Article  PubMed  CAS  Google Scholar 

  • Yamaki A, Noda S, Kudoh J, et al.The mammalian single-minded (SIM) gene: mouse cDNA structure and diencephalic expression indicate a candidate gene for Down syndrome.Genomics.1996:35:136–43.

    Article  PubMed  CAS  Google Scholar 

  • Yuan LW, Gambee JE.Phosphorylation ofp300 at serine 89 by protein kinase C.J Biol Chem. 2000:275:40946–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, S., Perdew, G. Okadaic Acid Increases ARNT Homodimer Transactivation Potential. Cell Biol Toxicol 18, 109–120 (2002). https://doi.org/10.1023/A:1015332217714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015332217714

Navigation