Skip to main content
Log in

Recognizing Groups G 23n) by Their Element Orders

Algebra and Logic Aims and scope

Abstract

It is proved that a finite group that is isomorphic to a simple non-Abelian group G=G 2(3n) is, up to isomorphism, recognized by a set ω(G) of its element orders, that is, H ≃ G if ω(H)=ω(G) for some finite group H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. V. D. Mazurov, “The set of orders of elements in a finite group,” Algebra Logika, 33 No. 1, 81-89 (1994).

    Google Scholar 

  2. W. J. Shi, “A characteristic property of A 5,” J. Southwest-China Teach. Univ., Ser. B. No. 3, 11-14 (1986).

  3. W. J. Shi, “A characteristic property of PSL 2(7),” J. Austr. Math. Soc., Ser. A, 36 No. 3, 354-356 (1984).

    Google Scholar 

  4. W. J. Shi, “A characterization of some projective special linear groups,” J. Southwest-China Teach. Univ., Ser. B. No. 2, 2-10 (1985).

  5. W. J. Shi, “A characteristic property of J 1 and PSL 2 (2 n ),Adv. Math. Beijing, 16 No. 4, 397-401 (1987).

    Google Scholar 

  6. R. Brandl and W. J. Shi, “The characterization of PSL(2, q) by its element orders,” J. Alg., 163, No. 1, 109-114 (1994).

    Google Scholar 

  7. V. D. Mazurov, M. C. Xu, and H. P. Cao, “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra Logika, 39 No. 5, 567-585 (2000).

    Google Scholar 

  8. W. J. Shi, “A characterization of Suzuki simple groups,” Proc. Am. Math. Soc., 114 No. 3, 589-591 (1992).

    Google Scholar 

  9. R. Brandl and W. J. Shi, “A characterization of finite simple groups with Abelian Sylow 2-subgroups,” Ric. Mat., 42 No. 1, 193-198 (1993).

    Google Scholar 

  10. H. W. Deng and W. J. Shi, “The characterization of Ree groups 2 F 4(q) by their element orders,” J. Alg., 217 No. 1, 180-187 (1999).

    Google Scholar 

  11. A. S. Kondratiev and V. D. Mazurov, “Recognition of alternating groups of prime degree from their element orders,” Sib. Mat. Zh., 41 No. 2, 360-371 (2000).

    Google Scholar 

  12. A. V. Zavarnitsin, “Recognition by the element order set of alternating groups of degree r + 1 and r + 2 for prime r,” Preprint No. 47, Institute of Discrete Mathematics and Informatics, Novosibirsk (2000).

    Google Scholar 

  13. S. Lipschutz and W. J. Shi, “Finite groups whose element orders do not exceed twenty,” Progr. Nat. Sc., 10 No. 1, 11-21 (2000).

    Google Scholar 

  14. J. S. Williams, “Prime graph components of finite groups,” J. Alg., 69 No. 2, 487-513 (1981).

    Google Scholar 

  15. A. S. Kondratiev, “On prime graph components for finite simple groups,” Mat. Sb., 180 No. 6, 787-797 (1989).

    Google Scholar 

  16. V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements,” Algebra Logika, 37 No. 6, 651-666 (1998).

    Google Scholar 

  17. R. Steinberg, Lectures on Chevalley Groups, Yale University (1967).

  18. R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., 28, Wiley, London (1972).

    Google Scholar 

  19. A. V. Vasilyev, “Minimal permutation representations of finite simple exceptional groups of types G 2 and F 4,” Algebra Logika, 35 No. 6, 663-684 (1996).

  20. Seminar on Algebraic Groups and Related Finite Groups, Springer, Berlin (1970).

  21. J. G. Thompson, “Normal p-complements for finite groups,” Math. Z., 72 No. 2, 332-354 (1960).

    Google Scholar 

  22. J. Conway, R. Curtis, S. Norton, et al., Atlas of Finite Groups, Clarendon, Oxford (1985).

    Google Scholar 

  23. A. V. Zavarnitsin and V. D. Mazurov, “Element orders in coverings of the symmetric and alternating groups,” Algebra Logika, 38 No. 3, 296-315 (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilyev, A.V. Recognizing Groups G 23n) by Their Element Orders. Algebra and Logic 41, 74–80 (2002). https://doi.org/10.1023/A:1015300429047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015300429047

Navigation