Skip to main content
Log in

Structure and Electron Spin Resonance of Annealed Sol-Gel Glasses Containing Ag

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, SiO2 samples with silver, prepared using the sol-gel method, were analyzed after being thermally treated in air in the range of 100 to 800°C. The sol-gel starting solutions were prepared by mixing tetra-ethyl-orthosilicate (TEOS), water and ethanol. Samples with 4 different H2O/TEOS molar ratios (3.3, 5, 7.5 and 11.7 respectively) and with different nominal Ag concentrations were prepared (1, 2 and 4%vol. of Ag). It was found that upon annealing, different silver spices were formed, such as Ag2 +, Ag+, Ag°, and metallic silver aggregates. The identification of these spices was carried out by means of X-ray diffraction, Electron Paramagnetic Resonance (EPR), optical emission and optical absorption. It was also found that the specific type of silver spices observed depends on the structure of the SiO2 matrix and on the annealing temperatures. It was found that samples prepared from precursor solutions with a low H2O/TEOS ratio have a more open structure, and therefore silver diffuses faster and forms agglomerates at lower temperatures. Samples prepared from solutions with larger H2O/TEOS ratios have a more dense structure, which allows the formation of atomic or molecular spices in addition to silver particles. A systematic study of this system was carried out using EPR on samples prepared from solutions having different H2O/TEOS molar ratios, various Ag concentrations and subjected to different thermal treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nogami, in Sol-Gel Optics: Processing and Applications, edited by L.C. Klein (Kluwer Academic, Hingham, M.A. 1994), p. 329.

    Google Scholar 

  2. M.A. Villegas, Bol. Soc. Esp. Cerám. Vidrio 33, 181 (1994).

    Google Scholar 

  3. C.R. Bamford, Color Generation and Control in Glasses (Elservier Science, Amsterdam; Oxford, NewYork, 1977), p. 48.

    Google Scholar 

  4. S.D. Stookey, G.H. Beall, and J.E. Pierson, J. Appl. Phys. 49, 5114 (1978).

    Google Scholar 

  5. C.J. Brinker and G.W. Scherer, in Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing (Academic Press, 1990).

  6. E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, J. Non-Cryst. Solids 245, 122 (1999).

    Google Scholar 

  7. M.A. García, S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernández Navarro, J. Phys. D: Appl. Phys. 32, 975 (1999).

    Google Scholar 

  8. Shaw-Kwen Ma and Juh Tzeng Lue, Solid State Comm. 97, 979 (1996).

    Google Scholar 

  9. J.M. Yañez-Limón, J.F. Pérez-Robles, J. González-Hernández, R. Zamorano-Ulloa, and D. Ramírez-Rosales, Thin Solid Films 373, 184 (2000).

    Google Scholar 

  10. J.M. Yañez-Limón, J.F. Pérez-Robles, J. González-Hernández, Y.V. Vorobiev, J.A. Romano, F.C.G. Gandra, and E.C. Da Silva, J. Sol-Gel Science and Technology 18, 207 (2000).

    Google Scholar 

  11. J.F. Pérez-Robles, F.J. García Rodríguez, J.M. Yañez-Limón, F.J. Espinoza-Beltran, Y.V. Vorovieb, and J. González-Hernández, J. Physics and Chemistry of Solids 60, 1729 (1999).

    Google Scholar 

  12. J.C. Phillips, Phys. Rev. B 33, 4443 (1986).

    Google Scholar 

  13. M.G. Garnica-Romo, J. González-Hernández, M.A. Hernández-Landaverde, Y. Vorobiev, F. Ruiz, and J.R. Martínez, J. Mat. Research 16, 2007 (2001).

    Google Scholar 

  14. R. Martínez-Mendoza, F. Ruiz, Y.V. Vorobiev, F. Pérez-Robles, and J. González-Hernández, J. Chem. Phys. 109, 751 (1998).

    Google Scholar 

  15. R.A. Zhitnikov and D.P. Peregud, Sov. Phys. Solid State 17, 1080 (1975).

    Google Scholar 

  16. Yu.N. Alenko, R.A. Zhitnikov, V.K. Krasikov, and D.P. Peregud, Sov. Phys. Solid State 18, 902 (1976).

    Google Scholar 

  17. N.I. Mel'nikov, D.P. Peregood, and R.A. Zhitnikov, J. Non-Crystalline Sol. 16, 195 (1974).

    Google Scholar 

  18. A.V. Dmtryuk, G.O. Karapetyan, and O.A. Yashcharzhinskaya, Sov. Phys. Solid State 27, 1066 (1998).

    Google Scholar 

  19. G. Swarnabala and M.V. Rajusekharan, Inorg. Chem. 28, 662, (1989).

    Google Scholar 

  20. S.E. Paje, J. Llopis, M.A. Villegas, and J.M. Fernández Navarro, Appl. Phys. A. 63, 431 (1996).

    Google Scholar 

  21. N.N. Vil'Chinskaya, A.V. Dmitryuk, E.G: Ignat'ev, G.T. Petrovskii, and Savvina, Sov. Phys. Solid State 26, 497 (1984).

    Google Scholar 

  22. S.E. Paje, J. Llopis, M.A. Villegas, M.A. García, and J.M. Fernández Navarro, Appl. Phys. A. 67, 429 (1998).

    Google Scholar 

  23. A. Meijerink, M.M.E. Van Heek, and G. Blasse, J. Phys. Chem. Solids, 54, 901 (1993).

    Google Scholar 

  24. B. Riegel, I. Hartmann, N. Kiefer, J. Grob, and J. Fricke, J. Non-Cryst. Sol. 211, 294 (1997).

    Google Scholar 

  25. C.J. Brinker, K.D. Keeter, D.N. Schaeter, and C.S. Ashley, J. Non-Cryst. Sol. 48, 47(1982).

    Google Scholar 

  26. H.C. Van der Hulst, in Light Scattering by Small Particles (Chapman, New York, 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnica-Romo, M., Limón, J.Y., González-Hernández, J. et al. Structure and Electron Spin Resonance of Annealed Sol-Gel Glasses Containing Ag. Journal of Sol-Gel Science and Technology 24, 105–112 (2002). https://doi.org/10.1023/A:1015283522804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015283522804

Navigation