Skip to main content
Log in

Sintering of Refractory Compounds Nanocrystalline Powders. Part 2. Non-Isothermal Sintering of Titanium Nitride Powder

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

New approaches to the sintering of nanocrystalline powders of refractory compounds are proposed. Titanium nitride-based ceramics with a grain size of 50 nm and nanohardness 28.8 ± 2.47 GPa was obtained by sintering at a controlled rate of densification. Investigation of evolution of the block structure in the material during sintering enabled further optimization of the procedure and reduction of the sintering temperature to 1150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Kislyi and M. A. Kuzenkova, Sintering of Refractory Compounds [in Russian], Nauk. Dumka, Kiev (1980).

    Google Scholar 

  2. D. T. Castro and J. Y. Ying, “Synthesis, processing, and properties of nanocrystalline titanium nitride,” Fine,Ultrafine and Nanopowders'98 Conference, N.Y. (1998).

  3. T. Rabe and R. Wasche, “Sintering of nanocrystalline titanium nitride,” Nanostructured Materials, 6, 357-360 (1995).

    Google Scholar 

  4. R. A. Andrievski, V. S. Urbanovich, N. P. Kobelev, and V. I. Torbov, “High-temperature consolidation and physical-mechanical properties of nanocrystalline TiN,” Report Russian Academy of Science, 39-41 (1997).

  5. A. I. Alyamovskii, Yu. G. Zainulin, and G. P. Shveikin, Oxycarbides and Oxynitrides of Transition Metals of the IVA and VA Subgroups [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  6. J. R. Groza, J. D. Curtis, and M. Kramer, “Field-assisted sintering of nanocrystalline titanium nitride,” J. Amer. Ceram. Soc., 83,No.5, 1281-1283 (2000).

    Google Scholar 

  7. A. V. Ragulya, V. V. Skorokhod, and A. V. Polotai, “Sintering and synthesis of nanocrystalline barium titanate powder under non-isothermal conditions. VI. Structure, grain boundaries, and dielectric properties of barium titanate obtained by different sintering methods,” Poroshk. Metall., Nos. 1-2,32-43 (2001).

  8. M. J. Mayo, “Processing of nanocrystalline ceramics from ultrafine particles,” Int. Mat. Rev., 41,No.3, 85-114 (1989).

    Google Scholar 

  9. H. Palmour III and T. M. Hare, “Rate-controlled sintering revisited,” in: Proc. 6th World Round TableConference on Sintering, Plenum Press, N.Y. (1985), pp. 16-23.

    Google Scholar 

  10. O. B. Zgalat-Lozinskii, A. V. Ragulya, V. V. Skorokhod, et al., “Sintering of nanocrystalline refractory compound powders. I. Storage and preliminary treatment of nanocrystalline boron nitride powders,” Poroshk. Metall., Nos. 9-10, 34-41 (2001).

  11. B. Khermel, B. Kiibak, et al., Mass Transport Processes during Sintering [in Russian], Nauk. Dumka, Kiev (1987).

    Google Scholar 

  12. M. F. Eshby and R. A. Verrall, “Diffusion accommodated flow and superplasticity,” Acta Met., 21, 149-163 (1973).

    Google Scholar 

  13. A. V. Ragulya, “Scientific Principles for Control of the Non-Isothermal Sintering of Nanocrystalline Materials,” Diss. Dokt. Tekh. Nauk., Kiev (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragulya, A.V., Zgalat-Lozinskii, O.B. & Skorokhod, V.V. Sintering of Refractory Compounds Nanocrystalline Powders. Part 2. Non-Isothermal Sintering of Titanium Nitride Powder. Powder Metallurgy and Metal Ceramics 40, 573–581 (2001). https://doi.org/10.1023/A:1015279919863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015279919863

Navigation