Skip to main content
Log in

Geometric Algebra in Linear Algebra and Geometry

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

This article explores the use of geometric algebra in linear and multilinear algebra, and in affine, projective and conformal geometries. Our principal objective is to show how the rich algebraic tools of geometric algebra are fully compatible with and augment the more traditional tools of matrix algebra. The novel concept of an h-twistor makes possible a simple new proof of the striking relationship between conformal transformations in a pseudo-Euclidean space to isometries in a pseudo-Euclidean space of two higher dimensions. The utility of the h-twistor concept, which is a generalization of the idea of a Penrose twistor to a pseudo-Euclidean space of arbitrary signature, is amply demonstrated in a new treatment of the Schwarzian derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablamowicz, R. and Salingaros, N. (1985) On the relationship between twistors and Clifford algebras, Lett. Math. Phys. 9, 149-155.

    Google Scholar 

  • Ablamowicz, A. and Fauser, B. (eds) (2000) Clifford Algebras and their Applications in Mathematical Physics, Birkhäuser, Boston.

    Google Scholar 

  • Barnabei, M., Brini, A. and Rota, G. C. (1985) On the exterior calculus of invariant theory, J. Algebra 96, 120-160.

    Google Scholar 

  • Bayro Corrochano, E. and Sobczyk, G. (eds) (2001) Geometric Algebra with Applications in Science and Engineering, Birkhäuser, Boston.

    Google Scholar 

  • Cnops, J. (1996) Vahlen matrices for non-definite metrics, In: R. Ablamowicz, P. Lounesto and J. M. Parra (eds), Clifford Algebras with Numeric and Symbolic Computations, Birkhäuser, Boston.

    Google Scholar 

  • Davis, P. J. (1974) The Schwarz Function and its Applications, Math. Assoc. Amer.

  • Doran, C., Hestenes, D., Sommen, F. and Van Acker, N. (1993) Lie groups as spin groups, J. Math. Phys. 34, 3642-3669.

    Google Scholar 

  • Dress, A. W. M. and Havel, T. F. (1993) Distance geometry and geometric algebra, Found. Phys. 23(10), 1357-1374.

    Google Scholar 

  • Fulton, W. and Harris, J. (1991) Representation Theory: A First Course, Springer-Verlag.

  • Havel, T. (1995) Geometric algebra and Mobius sphere geometry as a basis for Euclidean invariant theory, In: N. L. White (ed.), Invariant Methods in Discrete and Computational Geometry, Kluwer Acad. Publ., Dordrecht, pp. 245-256.

    Google Scholar 

  • Haantjes, J. (1937) Conformal representations of an n-dimensional Euclidean space with a nondefinite fundamental form on itself, Proc. Ned. Akad. Wet. (Math.) 40, 700-705.

    Google Scholar 

  • Hestenes, D. (1991) The design of linear algebra and geometry, Acta Appl. Math. 23, 65-93.

    Google Scholar 

  • Hestenes, D. and Sobczyk, G. (1984) Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, D. Reidel, Dordrecht.

    Google Scholar 

  • Hestenes, D. and Ziegler, R. (1991) Projective geometry with Clifford algebra, Acta Appl. Math. 23, 25-63.

    Google Scholar 

  • Kobayashi, O. and Wada, M. (2000) The Schwarzian and Möbius transformations in higher dimensions, </del>5th International Clifford Algebra Conference, Ixtapa 1999, In: J. Ryan and W. Sprösig (eds), Clifford Algebras and their Applications in Mathematical Physics, Vol. 2, Birkhäuser, Boston.

    Google Scholar 

  • Li, H., Hestenes, D. and Rockwood, A. Generalized Homogeneous Coordinates for Computational Geometry, to be published.

  • Lounesto, P. (1994) CLICAL software paquet and user manual, Helsinki Univ. Technol. Mathematics, Research Report A248.

  • Lounesto, P. (1997) Clifford Algebras and Spinors, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Lounesto, P. and Springer, P. (1989) Mobius transformations and Clifford algebras of Euclidean and anti-Euclidean spaces, In: J. Lawrynowicz (ed.), Deformations of Mathematical Structures, Kluwer Acad. Publ., Dordrecht, pp. 79-90.

    Google Scholar 

  • Maks, J. G. (1989) Modulo (1,1) periodicity of Clifford algebras and generalized Mobius transformations, Technical Univ. Delft (Dissertation).

  • Nehari, Z. (1952) Conformal Mapping, McGraw-Hill, New York.

    Google Scholar 

  • Penrose, R. and MacCallum, M. A. H. (1972) Twistor theory: An approach to quantization of fields and space-time, Phys. Rep. 6C, 241-316.

    Google Scholar 

  • Porteous, I. R. (1995) Clifford Algebras and the Classical Groups, Cambridge Univ. Press.

  • Rao, C. R. and Mitra, S. K. (1971) Generalized Inverse of Matrices and its Applications, Wiley, New York.

    Google Scholar 

  • Sobczyk, G. (1993) Jordan form in associative algebras, In: F. Brackx (ed.), Clifford Algebras and their Applications in Mathematical Physics, Proc. Third Internat. Clifford Workshop, Kluwer Acad. Publ., Dordrecht, pp. 33-41.

    Google Scholar 

  • Sobczyk, G. (1995) The hyperbolic number plane, College Math. J. 26(4), 268-280.

    Google Scholar 

  • Sobczyk, G. (1996) Structure of factor algebras and Clifford algebra, Linear Algebra Appl. 241-243, 803-810.

    Google Scholar 

  • Sobczyk, G. (1997a) The generalized spectral decomposition of a linear operator, College Math. J. 28(1), 27-38.

    Google Scholar 

  • Sobczyk, G. (1997b) Spectral integral domains in the classroom, Aportaciones Mat. Comun. 20, 169-188.

    Google Scholar 

  • Sobczyk, G. (2001) The missing spectral basis in algebra and number theory, Amer. Math. Monthly 108(4), 336-346.

    Google Scholar 

  • Young, J. W., (1930) Projective Geometry, The Open Court Publ. Co., Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozo, J.M., Sobczyk, G. Geometric Algebra in Linear Algebra and Geometry. Acta Applicandae Mathematicae 71, 207–244 (2002). https://doi.org/10.1023/A:1015256913414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015256913414

Navigation