Skip to main content
Log in

Planar Integrated Optical Waveguide Sensor for Isopropyl Alcohol in Aqueous Media

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

An attenuated total reflection (ATR) sensor for water-miscible organic solvents was constructed using a combination of sol-gel processing and integrated optical waveguide (IOW) technologies. The sensor consisted of single-mode, sol-gel based planar waveguide coated with a 40 nm thick, porous sol-gel indicator layer prepared from methyltriethoxysilane and doped with methyl red. The response of the senor to aqueous isopropyl alcohol (IPA) was investigated. Solvation of the indicator dye by IPA causes the absorbance spectrum to undergo a blue shift coupled with an increase in molar absorptivity. IPA was detected by measuring changes in ATR of the guided mode at 488 nm. A response curve extending from 1 to 100% (v/v) IPA in water was constructed for the sensor, from which a detection limit of 0.7% (v/v) IPA/water was estimated. Response and reversal times were typically less than one minute, making this sensor potentially attractive for on-line monitoring applications. The rapid response characteristics are attributable to relatively weak, reversible interactions between the indicator and analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.V. Buragohain, W.N. Gill, and S.M. Cramer, Ind. Eng. Chem. Res. 35, 3149 (1996).

    Google Scholar 

  2. P. Pal, D. Nandi, and T.N. Mistra, Thin Solid Films 239, 138 (1994).

    Google Scholar 

  3. A.K. Williams and J.T. Hupp, J. Am. Chem. Soc. 120, 4366 (1998).

    Google Scholar 

  4. K. Seiler, K. Wang, M. Kuratli, and W. Simon, Anal. Chim. Acta. 244, 151 (1991).

    Google Scholar 

  5. J.E. Walsh, B.D. MacCraith, M. Meaney, J.G. Vos, F. Regan, A. Lancia, and S. Artjushenko, Analyst 121, 789 (1996).

    Google Scholar 

  6. F.L. Dickert, S.K. Schreiner, G.R. Mages, and H. Kimmel, Anal. Chem. 61, 2306 (1989).

    Google Scholar 

  7. R. Göbel, R. Krska, S. Neal, and R. Kellner, Fresnius J. Anal. Chem. 350, 514 (1994).

    Google Scholar 

  8. J. Burck, J.P. Conzen, and H.J. Ache, Fresnius J. Anal. Chem. 342, 394 (1992).

    Google Scholar 

  9. M.A. Kessler, J.G. Gailer, and O.S. Wolfbeis, Sens. Actuators B 3, 267 (1991).

    Google Scholar 

  10. F.P. Milanovich, S.B. Brown, B.W. Colston Jr., P.F. Daley, and K.C. Langry, Talanta 41, 2189 (1994).

    Google Scholar 

  11. B.G. Healey, L. Li, and D.R. Walt, Biosens. Bioelectronics 12, 521 (1997).

    Google Scholar 

  12. Y. Kurauchi, M. Nagase, N. Egashira, and K. Ohga, Anal. Sci. 13, 987 (1997).

    Google Scholar 

  13. Y. Kurauchi, T. Yanai, and K. Ohga, Chem. Lett. 1411 (1991).

  14. J.H. Krech and S.L. Rose-Pehrsson, Anal. Chim. Acta 341, 53 (1997).

    Google Scholar 

  15. G.J. Mohr, F. Lehmann, U.W. Grummt, and U.E. Spichiger-Keller, Anal. Chim. Acta 344, 215 (1997).

    Google Scholar 

  16. D.N. Simon, R. Czolk, and H.J. Ache, Thin Solid Films 260, 107 (1995).

    Google Scholar 

  17. C. Reichardt, Chem. Rev. 21, 147 (1992).

    Google Scholar 

  18. C. Rottman, G.S. Grader, Y.D. Hazan, and D. Avnir, Langmuir 12, 5505 (1996).

    Google Scholar 

  19. D.L. Sackett and J. Wolff, Anal. Biochem. 167, 228 (1987).

    Google Scholar 

  20. K. Lobnik and O. Wolfbeis, J. Sol-Gel Sci. Technol. 20, 303 (2001).

    Google Scholar 

  21. U. Narang, R.A. Dunbar, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 1700 (1993).

    Google Scholar 

  22. G.J. Mohr, D. Citterio, and U.E. Spichiger-Keller, Sens. Actuators B49, 226 (1996).

    Google Scholar 

  23. F.L. Dickert, U. Geiger, P. Lieberzeit, and U. Reutner, Sens. Actuators B B70, 263 (2000).

    Google Scholar 

  24. L. Yang, S.S. Saavedra, and N.R. Armstrong, Anal. Chem. 68, 1834 (1996).

    Google Scholar 

  25. P.J. Skrdla, S.S. Saavedra, N.R. Armstrong, S.B. Mendes, and N. Peyghambarian, Anal. Chem. 71, 1332 (1999).

    Google Scholar 

  26. L. Li, M. Xu, G.I. Stegeman, and C.T. Seaton, Proc. SPIE-Int. Soc. Opt. Eng. 835, 72 (1987).

    Google Scholar 

  27. S.B. Mendes, L. Li, J.J. Burke, J.E. Lee, and S.S. Saavedra, Appl. Opt. 34, 6180 (1995).

    Google Scholar 

  28. S.S. Saavedra and W.M. Reichert, Appl. Spectros. 44, 1210 (1990).

    Google Scholar 

  29. P.J. Skrdla, S.S. Saavedra, and N.R. Armstrong, Appl. Spec. 53, 785 (1999).

    Google Scholar 

  30. C.J. Brinker and G.W. Scherer, Sol-Gel Science (AcademicPress, San Diego, 1990).

    Google Scholar 

  31. J. Jirasova, J. Bily, and L. Cermakova, Collect. Czech. Chem. Commun. 59, 322 (1994).

    Google Scholar 

  32. T.W. Solomons and T.W. Graham, Organic Chemistry, 4th ed. (John Wiley and Sons, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrdla, P.J., Mendes, S.B., Armstrong, N.R. et al. Planar Integrated Optical Waveguide Sensor for Isopropyl Alcohol in Aqueous Media. Journal of Sol-Gel Science and Technology 24, 167–173 (2002). https://doi.org/10.1023/A:1015256211417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015256211417

Navigation