Skip to main content
Log in

Excited to death: different ways to lose your neurones

  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The selective loss of neurones in a range of neurodegenerative diseases is widely thought to involve the process of excitotoxicity, in which glutamate-mediated neuronal killing is elaborated through the excessive stimulation of cell-surface receptors. Every such disease exhibits a distinct regional and subregional pattern of neuronal loss, so processes must be locally triggered to different extents to account for this. We have studied several mechanisms which could lead to excitotoxic glutamate pathophysiology and compared them indifferent diseases. Our data suggest that glutamate can reach toxic extracellular levels in Alzheimer disease by malfunctions in cellular transporters, and that the toxicity may be exacerbated by continued glutamatere lease from presynaptic neurones acting on hypersensitive postsynaptic receptors. Thus the excitotoxicity is direct. In contrast, alcoholic brain damage arises in regions where GABA-mediated inhibition is deficient, and fails properly to dampen trans-synaptic excitation. Thus the excitotoxicity is indirect. A variety of such mechanisms is possible, which may combine in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin RL and Greenamyre JT (1992) Alternative excitotoxic hypotheses. Neurology 42: 733-738

    PubMed  CAS  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP and Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155-4160

    Article  PubMed  CAS  Google Scholar 

  • Balcar VJ and Li Y (1992) Heterogeneity of high affinity uptake of L-glutamate and L-aspartate in the mammalian central nervous system. Life Sci 51: 1467-1478

    Article  PubMed  CAS  Google Scholar 

  • Blakely RD, Clark JA, Pacholczyk T and Amara SG (1991) Distinct, developmentally regulated brain mRNAs direct the synthesis of neurotransmitter transporters. J Neurochem 56: 860-871

    PubMed  CAS  Google Scholar 

  • Bradford HF and Dodd PR (1976a) Biochemistry and basic mechanisms in epilepsy. In: Davison AN (ed) Biochemistry and Neurological Disease, pp 114-167. Blackwell, London

    Google Scholar 

  • Bradford HF and Dodd PR (1976b) Convulsions and activation of epileptic foci induced by monosodium glutamate and related compounds. Biochem Pharmacol 26: 253-254

    Article  Google Scholar 

  • Buckley ST, Eckert AL and Dodd PR (2000) Expression and distribution of GABAA receptor subtypes in human alcoholic brain. Ann NY Acad Sci 914: 58-64

    Article  PubMed  CAS  Google Scholar 

  • Butterworth RF, Lavoie J, Giguère JF, Pomier-Layrargues G and Bergeron M (1987) Cerebral GABA-ergic and glutamatergic function in hepatic encephalopathy. Neurochem Pathol 6: 131-144

    PubMed  CAS  Google Scholar 

  • Chapman AG (2000) Glutamate and epilepsy. J Nutr 130: 1043S-1045S

    PubMed  CAS  Google Scholar 

  • Chapman AG, Durmuller N, Lees GJ and Meldrum BS (1989) Excitotoxicity of NMDA and kainic acid is modulated by nigrostriatal dopaminergic fibres. Neurosci Lett 107: 256-260

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL and Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40: 143-210

    Google Scholar 

  • Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J and Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18: 3606-3619

    PubMed  CAS  Google Scholar 

  • Dodd PR, Hambley JW, Cowburn RF and Hardy JA (1988) A comparison of methodologies for the study of functional transmitter neurochemistry in human brain. J Neurochem 50: 1333-1345

    PubMed  CAS  Google Scholar 

  • Dodd PR, Thomas GJ, Harper CG and Kril JJ (1992) Amino acid neurotransmitter receptor changes in cerebral cortex in alcoholism: effect of cirrhosis of the liver. J Neurochem 59: 1506-1515

    PubMed  CAS  Google Scholar 

  • Dodd PR, Scott HL and Westphalen RI (1994) Excitotoxic mechanisms in the pathogenesis of dementia. Neurochem Internat 25: 203-219

    Article  CAS  Google Scholar 

  • Dodd PR, Kril JJ, Thomas GJ, Watson WEJ, Johnston GAR and Harper CG (1996) Receptor binding sites and uptake activities mediating GABA neurotransmission in chronic alcoholics with Wernicke encephalopathy. Brain Res 710: 215-228

    Article  PubMed  CAS  Google Scholar 

  • Dodd PR and Lewohl JM (1998) Cell death mediated by amino acid transmitter receptors in human alcoholic brain damage: conflicts in the evidence. Ann NY Acad Sci 844: 50-58

    Article  PubMed  CAS  Google Scholar 

  • Dodd PR, Beckmann AM, Davidson MS and Wilce PA (2000) Glutamate-mediated transmission, alcohol, and alcoholism. Neurochem Internat 37: 509-533

    Article  CAS  Google Scholar 

  • Duncan GE, Breese GR, Criswell HE, McCown TJ, Herbert JS, Devaud LL and Morrow AL (1995) Distribution of [3H]zolpidem binding sites in relation to messenger RNA encoding the ?1, ?2 and ?2 subunits of GABAA receptors in rat brain. Neuroscience 64: 1113-1128

    Article  PubMed  CAS  Google Scholar 

  • Eisen AA (1995) Amyotrophic lateral sclerosis is a multifactorial disease. Muscle Nerve 18: 741-752

    Article  PubMed  CAS  Google Scholar 

  • Gilman SC, Bonner MJ and Pellmar TC (1994) Free radicals enhance basal release of D-[3H]aspartate from cerebral cortical synaptosomes. J Neurochem 62: 1757-1763

    PubMed  CAS  Google Scholar 

  • Gruen RJ, Elsworth JD and Roth RH (1990) Regionally specific alterations in the low-affinity GABAA receptor following exposure to diazepam. Brain Res 514: 151-154

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Cowburn RF, Barton A, Reynolds GP, Lofdahl E, O'Carroll A-M, Wester P and Winblad B (1987) Region-specific loss of glutamate innervation in Alzheimer's disease. Neurosci Lett 73: 77-80

    Article  PubMed  CAS  Google Scholar 

  • Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honore T, Nielsen M, Lehre KP and Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271: 27715-27722

    Article  PubMed  CAS  Google Scholar 

  • Hornung J-P and de Tribolet N (1994) Distribution of GABAcontaining neurons in human frontal cortex: a quantitative immunocytochemical study. Anat Embryol (Berlin) 189: 139-145

    CAS  Google Scholar 

  • Hume Adams J, Corsellis JAN and Duchen LW(1984) Greenfield's Neuropathology, 4th ed, pp 726-733, 971-980. Wiley-Medical, New York

    Google Scholar 

  • Hyman BT, van Hoesen GW, Damasio AR and Barnes CL (1984) Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168-1170

    PubMed  CAS  Google Scholar 

  • Hynd M, Scott HL and Dodd PR (2001) GlutamateNMDA receptor NR1 subunit mRNA expression in Alzheimer's disease. J Neurochem 78: 175-182

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian ZS (1985) Diagnosis of Alzheimer's disease. Arch Neurol 42: 1097-1105

    PubMed  CAS  Google Scholar 

  • Kril JJ, Halliday GM, Svoboda MD and Cartwright H (1997) The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79: 983-998

    Article  PubMed  CAS  Google Scholar 

  • Lavoie J, Giguère JF, Pomier-Layrargues G and Butterworth RF (1987) Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy. Metab Brain Dis 2: 283-290

    Article  PubMed  CAS  Google Scholar 

  • Lewohl JM, Crane DI and Dodd PR (1997a) Expression of the ?1, ?2 and ?3 isoforms of the GABAA receptor in human alcoholic brain. Brain Res 751: 102-112

    Article  PubMed  CAS  Google Scholar 

  • Lewohl JM, Crane DI and Dodd PR (1997b) Zolpidem binding sites on the GABAA receptor in brain from human cirrhotic and noncirrhotic alcoholics. Eur J Pharmacol 326: 265-272

    Article  PubMed  CAS  Google Scholar 

  • Lewohl JM, Huygens F, Crane DI and Dodd PR (2001) GABAA receptor ? subunit proteins in human chronic alcoholics. J Neurochem 78: 424-434

    Article  PubMed  CAS  Google Scholar 

  • Lustig HS, von Brauchitsch KL, Chan J and Greenberg DA (1992) A novel inhibitor of glutamate release reduces excitotoxic injury in vitro. Neurosci Lett 143: 229-232

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B, Davis DL, Bryant K, Lieberburg I and Rydel RE (1992) ?-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12: 376-389

    PubMed  CAS  Google Scholar 

  • Meyer T, Munch C, Knappenberger B, Liebau S, Volkel H and Ludolph AC (1998) Alternative splicing of the glutamate transporter EAAT2 (GLT-1). Neurosci Lett 241: 68-70

    Article  PubMed  CAS  Google Scholar 

  • Miller S, Kesslak JP, Romano C and Cotman CW (1995) Roles of metabotropic glutamate receptors in brain plasticity and pathology. Ann NY Acad Sci 757: 460-474

    PubMed  CAS  Google Scholar 

  • Mortensen M and Dodd PR (1999) The modulatory effect of spermine on the glutamate-NMDA receptor is regionally variable in normal human adult cerebral cortex. Pharmacol Toxicol 84: 135-142

    Article  PubMed  CAS  Google Scholar 

  • Naskar R, Vorwerk CK and Dreyer EB (2000) Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci 41: 1940-1944

    PubMed  CAS  Google Scholar 

  • Nielsen KJ, Skjærbæk N, Dooley M, Adams DA, Mortensen M, Dodd PR, Craik DJ, Alewood PF and Lewis RJ (1999) Stuctureactivity relationships of conantokins at the human glutamate-NMDA receptor. J Med Chem 42: 415-426

    Article  PubMed  CAS  Google Scholar 

  • Ogata T, Nakamura Y, Shibata T and Kataoka K (1992) Release of excitatory amino acids from cultured hippocampal astrocytes induced by a hypoxic-hypoglycemic stimulation. J Neurochem 58: 1957-1959

    PubMed  CAS  Google Scholar 

  • Ozkan ED and Ueda T (1998) Glutamate transport and storage in synaptic vesicles. Jpn J Pharmacol 77: 1-10

    Article  PubMed  CAS  Google Scholar 

  • Poli A, Contestabile A, Migani P, Rossi L, Rondelli C, Virgili M, Bissoli R and Barnabei O (1985) Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acidic neurotransmitters. J Neurochem 45: 1677-1686

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Lüddens H and Seeburg PH (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245: 1389-1391

    PubMed  CAS  Google Scholar 

  • Rothman SM and Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105-111

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin LJ and Kuncl RW(1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326: 1464-1468

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin LJ, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N and Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13: 713-725

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, van Kammen M, Levey AI, Martin LJ and Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73-84

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD, Johnson BG, Salhoff CR, McDonald JW and Johnston MV (1991) In vitro and in vivo pharmacology of transand cis-(+-)-1-amino-1,3-cyclopentanedicarboxylic acid: dissociation of metabotropic and ionotropic excitatory amino acid receptor effects. J Neurochem 56: 1789-1796

    PubMed  CAS  Google Scholar 

  • Scott HL, Tannenberg AEG and Dodd PR (1995) Variant forms of neuronal glutamate transporter sites in Alzheimer's disease cerebral cortex. J Neurochem 64: 2193-2202

    Article  PubMed  CAS  Google Scholar 

  • Scott HL, Tannenberg RK, Westphalen RI and Dodd PR (2002a) The identification and characterization of excitotoxic nerveendings in Alzheimer disease. Neuromol Med (in press)

  • Scott HL, Tannenberg AEG, Pow DA and Dodd PR (2002b) Aberrant expression of glutamate transporter EAATI in Alzheimer's disease. J Neurosci (in press)

  • Seeburg PH (1990) Elucidating GABAA receptor heterogeneity: an integrated molecular approach. In: Biggio G and Costa E (eds) GABA and Benzodiazepine Receptor Subtypes, pp 15-21. Raven Press, New York

    Google Scholar 

  • Sladeczek F, Manzoni O, Fagni L, Dumuis A, Pin J-P, Sebben M and Bockaert J (1992) The metabotropic glutamate receptor (MGR): pharmacology and subcellular location. J Physiol (Paris) 86: 47-55

    CAS  Google Scholar 

  • Thomas RJ (1995) Excitatory amino acids in health and disease. J Amer Geriatr Soc 43: 1279-1289

    CAS  Google Scholar 

  • Uldall P, Hansen FJ and Tonnby B (1993) Lamotrigine in Rett syndrome. Neuropediatrics 24: 339-340

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Ooboshi H, Ibayashi S, Uchimura H and Fujishima M (1993) Cerebral blood flow and ischemia-induced neurotransmitter release in the striatum of aged spontaneously hypertensive rats. Stroke 24: 577-580

    PubMed  CAS  Google Scholar 

  • Yoshioka A, Hardy M, Younkin DP, Grinspan JB, Stern JL and Pleasure D (1995) ?-Amino-3-hydroxy-5-methyl-4-isoxazolepro pionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem 64: 2442-2448

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk GD, Hyndman AG and Nicklas WJ (1989) Excitatory amino acid-induced toxicity in chick retina: amino acid release, histology, and effects of chloride channel blockers. J Neurochem 53: 1610-1619

    PubMed  CAS  Google Scholar 

  • Zeevalk GD, Schoepp DD and Nicklas WJ (1995) Excitotoxicity at both NMDA and non-NMDA glutamate receptors is antagonized by aurintricarboxylic acid: evidence for differing mechanisms of action. J Neurochem 64: 1749-1758

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, P.R. Excited to death: different ways to lose your neurones. Biogerontology 3, 51–56 (2002). https://doi.org/10.1023/A:1015255312948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015255312948

Navigation