Skip to main content
Log in

Flow Regimes of Interaction of a Turbulent Plane Jet into a Rectangular Cavity: Experimental Approach and Numerical Modelling

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present work is devoted to the experimental and numerical study ofthe interaction of a turbulent plane jet with a rectangular cavity.Several flow regimes have been found to occur: the non-oscillationregime, the stable oscillation regime and an unstable oscillationregime. The first two regimes have been particularly considered. Theexperimental study has been carried out using hot wire anemometry andsome visualisations. The numerical predictions based on statisticalmodelling have been made using on the one hand the standard k–ε model and on the other hand a two-scales split spectrum model. The structuralproperties of the flow have been described for the different situations.For the oscillatory regime, a parametrical study allowed to determinethe influence of the jet exit location and the Reynolds number on thefrequency of the jet flapping. The one point closures have been able topredict the oscillatory regime, and in particular the two-scales modelled to improved results because better account is taken of lag effectsin unsteady non-equilibrium situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogab, A., Contribution à l'étude de l'évolution d'un jet plan turbulent dans une cavité de section rectangulaire. Thèse de Magister, Mécanique des Fluides, USTHB Alger (1985).

  2. Shakouchi, T., Suematsu, Y. and Ito, T., A study on oscillatory jet in a cavity. Bull. JSME 25 (1982) 1258–1265.

    Google Scholar 

  3. Benaissa, A., Contribution à l'étude de l'évolution d'un jet d'air à symétrie axiale dans une cavité cylindrique. Thèse de Magister, Mécanique des Fluides, USTHB, Alger (1985).

  4. Hebrard, P., Liousse, F. and Calvet, P., Méthodes et moyens de mesure de débit de gaz, Collection des Monographies du Bureau National de Métrologie, Editions Chiron, Paris (1979).

    Google Scholar 

  5. Shakouchi, T., A new fluidic oscillator, flowmeter, without control port and feedback loop. J. Dynam. Systems, Measurement Control 111 (1989) 535–539.

    Google Scholar 

  6. Maurel, A., Instabilité d'un jet confiné. Thèse de Doctorat de l'Université Paris VI (1994).

  7. Shakouchi, T., Kuzuhara, S. and Yamaguchi, J., Oscillatory phenomena of an attached jet. Bull. JSME 29 (1986) 1117–1123.

    Google Scholar 

  8. Bourque, C. and Newman, B.G., Reattachment of a two dimensionnal incompressible jet to an adjacent flat plate. Aeronaut. Quart. XI (1960) 201–232.

    Google Scholar 

  9. Sawyer, R.A., The flow due to two-dimensional jet issuing parallel to a flat plate. J. Fluid Mech. 9 (1960) 543–560.

    Google Scholar 

  10. Ayukawa, K. and Shakouchi, T., Analysis of a jet attaching to an offset parallel plate (Oscillation of a jet). Bull. JSME 19 (1976) 395–401.

    Google Scholar 

  11. Shakouchi, T. and Kuzuhara, S., Analysis of a jet attaching to an offset parallel plate (Influence of an opposite wall), Bull. JSME 25 (1982) 766–773.

    Google Scholar 

  12. El-Taher, R.M., Similarity in ventilated wall jets. AIAA J. 20 (1982) 161–166.

    Google Scholar 

  13. Shakouchi, T., A study on the three-dimensional, reattached jet (Reattachment to a side wall), Bull. JSME 29 (1986) 2508–2514.

    Google Scholar 

  14. Giralt, F., Chia, C.J. and Trass, O., Characterisation of the impingement region in an axisymmetric turbulent jet. Indust. Engrg. Chem. Fund. 16 (1977) 21–28.

    Google Scholar 

  15. Yap, C.R., Turbulent heat and momentum transfer in recirculating and impinging flows. Doctor's Thesis, University of Manchester Institute of Science and Technology (1987) and UMIST Report TFD/87/1 (1987).

  16. Looney, M.K. and Walsh, J.J., Mean-flow turbulent characteristics of free and impinging jet flows. J. Fluid Mech. 147 (1984) 397–429.

    Google Scholar 

  17. Cooper, D., Jackson, D.C., Launder, B.E. and Liao, G.X., Impinging jet studies for turbulence model assessment — I. Flow field experiments. Internat. J. Heat Mass Transfer 36 (1993) 2675–2684.

    Google Scholar 

  18. Craft, T.J., Graham, L.J.W. and Launder, B.E., Impinging jet studies for turbulence model assessment — II. An examination of the performance of four turbulence models. Internat. J. Heat Mass Transfer 36 (1993) 2685–2697.

    Google Scholar 

  19. Pereira, J.C.F. and Sousa, J.M.M., Experimental and numerical investigation of flow oscillations in a rectangular cavity. ASME, J. Fluids Engrg. 117 (1995) 68–74.

    Google Scholar 

  20. Sarohia, V., Experimental investigation of oscillations in flows over shallow cavities. AIAA J. 15 (1977) 984–991.

    Google Scholar 

  21. Sinha, S.N., Gupta, A.K. and Oberai, M.M., Laminar separating flow over backsteps and cavities, Part II: Cavities. AIAA J. 20 (1982) 370–375.

    Google Scholar 

  22. Villermaux, E. and Hopfinger, E.J., Self-sustained oscillations of a confined jet: A case study for the non-linear delayed saturation model. Phys. D 72 (1994) 230–243.

    Google Scholar 

  23. Rockwell, D. and Naudascher, E., Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11 (1979) 67–94.

    Google Scholar 

  24. Bradshaw, P., An Introduction to Turbulence and Its Measurements. Pergamon Press, Oxford (1971).

    Google Scholar 

  25. Muller, U.R., On the accuracy of turbulence measurements with inclined hot wires. J. Fluid Mech. 119 (1982) 155–172.

    Google Scholar 

  26. Bruun, H.H., Hot-Wire Anemometry, Principles and Signal Analysis. Oxford University Press, Oxford (1995).

    Google Scholar 

  27. Jones, W.P. and Launder, B.E., The prediction of laminarization with a two-equations model of turbulence. Internat. J. Heat Mass Transfer 15 (1972) 301–313.

    Google Scholar 

  28. Hanjalic, K., Launder, B.E. and Schiestel, R., Multiple time-scale concepts in turbulent transport modelling. In: Bradbury, L.S., Durst, F., Launder, B.E., Schmidt, F.W. and Whitelaw, J.H. (eds), Turbulent Shear Flows 2, Selected Papers from the 2nd International Symposium on Turbulent Shear Flows. Springer-Verlag, Berlin (1980) pp. 36–49.

    Google Scholar 

  29. Schiestel, R., Multiple-time-scale modeling of turbulent flows in one point closures. Phys. Fluids 30 (1987) 722–731.

    Google Scholar 

  30. Schiestel, R., Les écoulements turbulents, Modélisation et simulation, 2nd edn. Hermès, Paris (1998).

    Google Scholar 

  31. Patankar, S. V., Numerical Heat Transfer and Fluid Flow. Hemisphere & McGraw Hill, New York (1980).

    Google Scholar 

  32. Bernard, A., Brizzi, L.-E. and Bousgarbies, J.-L., A comparison of flow visualisation and wall pressure measurements for a jet impinging on a plane surface. Exp. Fluids 29 (2000) 23–29.

    Google Scholar 

  33. Shakouchi, T., An experimental study on the cavity type fluidic oscillator. Research Reports of the Faculty of Engineering, Mie University, Japan, Vol. 6 (1981) pp. 1–13.

    Google Scholar 

  34. Bosch, G. and Rodi, W., Simulation of vortex shedding past a square cylinder near a wall. Internat. J. Heat Fluid Flow 17 (1996) 267–275.

    Google Scholar 

  35. Kato, M. and Launder, B.E., The modelling of turbulent flow around a stationary and vibrating square cylinder. In: Proceedings 9th Symposium on Turbulent Shear Flows, Kyoto, Japan August 16–18, Vol. 9 (1993) p. 10.4.1.

    Google Scholar 

  36. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (1994) 1598–1605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mataoui, A., Schiestel, R. & Salem, A. Flow Regimes of Interaction of a Turbulent Plane Jet into a Rectangular Cavity: Experimental Approach and Numerical Modelling. Flow, Turbulence and Combustion 67, 267–304 (2001). https://doi.org/10.1023/A:1015255211723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015255211723

Navigation