Skip to main content
Log in

Synthesis of Colloidal Cobalt Nanoparticles with Controlled Size and Shapes

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A method of producing high quality magnetic colloidal dispersions by the rapid pyrolysis of cobalt carbonyl in an inert atmosphere was employed to produce monodispersed, stabilized, defect-free ε-cobalt nanocrystals with spherical shapes and sizes ranging from 3 to 17 nm, as well as cubic and rod-like shaped particles. The size distribution and the shape of the nanocrystals were controlled by varying the surfactant composition (oleic acid, phosphonic oxides and acids), its concentration and the reaction temperature. These particles have been observed to produce 2D self-assemblies when evaporated at low rates in a controlled atmosphere. A combination of X-ray powder diffraction; transmission electron microscopy; and SQUID magnetometry has been used to characterize both the dispersed nanocrystals and the assembled superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Lieber, Solid State Commun. 107 (1998) 607; A.P. Alivisatos, Science 271 (1996) 933.

    Google Scholar 

  2. G. Schmid and L.F. Chi, Adv. Mat. 10 (1998) 515.

    Google Scholar 

  3. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whymnan, J. Chem. Soc., Chem. Commun 801 (1994).

  4. J.M. Petrovski, T.C. Green and M.A. El-Sayed, J. Phys. Chem. A 105 (2001) 5542.

    Google Scholar 

  5. H. Hirai, J. Macromol. Soc., Chem A 13 (1979) 633.

    Google Scholar 

  6. D. de Caro et al., Chem. Mater. 8 (1996) 1987; S.J. Park et al., J. Am. Chem. Soc. 122 (2000) 8581.

    Google Scholar 

  7. T. Ould Ely, C. Amiens and B. Chaudret, Chem. Mater. 11 (1999) 526.

    Google Scholar 

  8. J.R. Thomas, J. Appl. Phys. 37 (1966) 2914.

    Google Scholar 

  9. K.V. Sarathy, G.U. Kulkarni and C.N. Rao, J. Chem. Soc., Chem. Commun (1997) 537.

  10. T. Ould Ely et al., J. Phys. Chem. B 104 (2000) 165.

    Google Scholar 

  11. S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, Science 287 (2000) 1989.

    Google Scholar 

  12. T. Fujimoto, Y. Mizukoshi, Y. Nagata, Y. Maeda and R. Oshima, Scripta Materialia 44 (2001) 2183.

    Google Scholar 

  13. For CoO, see J.S. Yin and Z.L. Wang, Phys. Rev. Lett. 79 (1997) 2570.

    Google Scholar 

  14. C.B. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706; L. Manna, E.C. Scher and A.P. Alivisatos, J. Am. Chem. Soc.(in Press).(Available on line); X. Peng et al., Nature 404 (2000) 59.

    Google Scholar 

  15. S. Sun and C.B. Murray, J. Appl. Phys. 85 (1999) 4325.

    Google Scholar 

  16. C. Petit, A. Taleb and P. Pileni, J. Phys. Chem. 103 (1999) 1805.

    Google Scholar 

  17. J.R. Thomas, J. Appl. Phys. 37 (1966) 2914.

    Google Scholar 

  18. D.P. Dinega and M.G. Bawendi, Angew. Chem. Int. ed. 38 (1999) 1788.

    Google Scholar 

  19. J.R. Thomas, US Patent No. 3284358, 1966/11/08.

  20. X. Peng, J. Wickham and A.P. Alivisatos, J. Am. Chem. Soc. 120 (1998) 5343.

    Google Scholar 

  21. X.M. Lin, C.M. Sorensen and K.J. Klabunde, J. Nanoparticle Reserch 2 (2000) 157.

    Google Scholar 

  22. Z.L. Wang, Adv. Mater. 10 (1998) 13-30; P. Ohara, D.V. Le., J.R. Heath and W.M. Gelbart, Phys. Rev. Lett.75 (1995) 3466-3469.

    Google Scholar 

  23. Z.L. Wang, J. Phys. Chem. B 104 (2000) 1153.

    Google Scholar 

  24. See for example A.A. Adesina, Applied Catalysis:General 138 (1996) 345.

    Google Scholar 

  25. V.F. Puntes, K.M. Krishnan and P. Alivisatos, Applied Physics Letters 78 (2001) 2187; V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Science 291 (2001) 2115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puntes, V.F., Krishnan, K. & Alivisatos, A.P. Synthesis of Colloidal Cobalt Nanoparticles with Controlled Size and Shapes. Topics in Catalysis 19, 145–148 (2002). https://doi.org/10.1023/A:1015252904412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015252904412

Navigation