Abstract
A method of producing high quality magnetic colloidal dispersions by the rapid pyrolysis of cobalt carbonyl in an inert atmosphere was employed to produce monodispersed, stabilized, defect-free ε-cobalt nanocrystals with spherical shapes and sizes ranging from 3 to 17 nm, as well as cubic and rod-like shaped particles. The size distribution and the shape of the nanocrystals were controlled by varying the surfactant composition (oleic acid, phosphonic oxides and acids), its concentration and the reaction temperature. These particles have been observed to produce 2D self-assemblies when evaporated at low rates in a controlled atmosphere. A combination of X-ray powder diffraction; transmission electron microscopy; and SQUID magnetometry has been used to characterize both the dispersed nanocrystals and the assembled superlattices.
Similar content being viewed by others
References
C.M. Lieber, Solid State Commun. 107 (1998) 607; A.P. Alivisatos, Science 271 (1996) 933.
G. Schmid and L.F. Chi, Adv. Mat. 10 (1998) 515.
M. Brust, M. Walker, D. Bethell, D.J. Schiffrin and R. Whymnan, J. Chem. Soc., Chem. Commun 801 (1994).
J.M. Petrovski, T.C. Green and M.A. El-Sayed, J. Phys. Chem. A 105 (2001) 5542.
H. Hirai, J. Macromol. Soc., Chem A 13 (1979) 633.
D. de Caro et al., Chem. Mater. 8 (1996) 1987; S.J. Park et al., J. Am. Chem. Soc. 122 (2000) 8581.
T. Ould Ely, C. Amiens and B. Chaudret, Chem. Mater. 11 (1999) 526.
J.R. Thomas, J. Appl. Phys. 37 (1966) 2914.
K.V. Sarathy, G.U. Kulkarni and C.N. Rao, J. Chem. Soc., Chem. Commun (1997) 537.
T. Ould Ely et al., J. Phys. Chem. B 104 (2000) 165.
S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, Science 287 (2000) 1989.
T. Fujimoto, Y. Mizukoshi, Y. Nagata, Y. Maeda and R. Oshima, Scripta Materialia 44 (2001) 2183.
For CoO, see J.S. Yin and Z.L. Wang, Phys. Rev. Lett. 79 (1997) 2570.
C.B. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706; L. Manna, E.C. Scher and A.P. Alivisatos, J. Am. Chem. Soc.(in Press).(Available on line); X. Peng et al., Nature 404 (2000) 59.
S. Sun and C.B. Murray, J. Appl. Phys. 85 (1999) 4325.
C. Petit, A. Taleb and P. Pileni, J. Phys. Chem. 103 (1999) 1805.
J.R. Thomas, J. Appl. Phys. 37 (1966) 2914.
D.P. Dinega and M.G. Bawendi, Angew. Chem. Int. ed. 38 (1999) 1788.
J.R. Thomas, US Patent No. 3284358, 1966/11/08.
X. Peng, J. Wickham and A.P. Alivisatos, J. Am. Chem. Soc. 120 (1998) 5343.
X.M. Lin, C.M. Sorensen and K.J. Klabunde, J. Nanoparticle Reserch 2 (2000) 157.
Z.L. Wang, Adv. Mater. 10 (1998) 13-30; P. Ohara, D.V. Le., J.R. Heath and W.M. Gelbart, Phys. Rev. Lett.75 (1995) 3466-3469.
Z.L. Wang, J. Phys. Chem. B 104 (2000) 1153.
See for example A.A. Adesina, Applied Catalysis:General 138 (1996) 345.
V.F. Puntes, K.M. Krishnan and P. Alivisatos, Applied Physics Letters 78 (2001) 2187; V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Science 291 (2001) 2115.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Puntes, V.F., Krishnan, K. & Alivisatos, A.P. Synthesis of Colloidal Cobalt Nanoparticles with Controlled Size and Shapes. Topics in Catalysis 19, 145–148 (2002). https://doi.org/10.1023/A:1015252904412
Issue Date:
DOI: https://doi.org/10.1023/A:1015252904412