Skip to main content
Log in

Direct and Indirect pCO2 Measurements in a Wide Range of pCO2 and Salinity Values (The Scheldt Estuary)

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Recent improvements in both Infra-red spectroscopy and equilibrator techniqueshave allowed to determine, for the first time, pCO2using simultaneously and continuously both the direct and indirect methods in an estuary where pCO2 values range from 500 to 8500 μatm and salinity from 0 to 30. Our results show that both methods are in excellent agreement in the wholeestuary (r2 = 0.999, n = 1075, p < 0.0001). Thus, the NBS (US National Bureau of Standards) scale, although inadequate for seawater samples, is appropriate for estuarine waters and can be applied with confidence to calculate pCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates R. G. (1973) Determination of pH, Theory and Practice. John Wiley and Sons, New York.

    Google Scholar 

  • Butler R. A., Covington A. K. and Whitfield M. (1986) The determination of pH in estuarine waters I. Practical considerations. Oceanol. Acta 8, 423-432.

    Google Scholar 

  • Cai W.-J. and Wang Y. (1998) The chemistry, fluxes, and source of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43, 657-668.

    Google Scholar 

  • Cai W.-J., Pomeroy L. R., Moran M. A. and Wang Y. (1999) Oxygen and carbon dioxide mass balance for estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnol. Oceanogr. 44, 639-649.

    Google Scholar 

  • Clayton T. D. and Byrne R. H. (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. 40, 2115-2129.

    Google Scholar 

  • Copin-Montégut C. (1988) A new formula for the effect of temperature on the partial pressure of carbon dioxide in seawater. Mar. Chem. 25, 29-37.

    Google Scholar 

  • Dickson A. G. (1993) pH buffers for seawater media based on the total hydrogen ion concentration scale. Deep-Sea Res. 40, 107-118.

    Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water (eds. A.G. Dickson and C. Goyet). ORNL/CDIAC-74.

  • Frankignoulle M., Bourge I. and R. Wollast R. (1996) Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt). Limnol. Oceanogr. 41, 365-369.

    Google Scholar 

  • Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., Delille B., Libert E. and Théate J.-M. (1998) Carbon dioxide emission from European estuaries. Science 282, 434-436.

    Google Scholar 

  • Frankignoulle M., Borges A. and Biondo R. (2001) A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments. Water Research 35/5, 1344-1347.

    Google Scholar 

  • Fuhrmann R. and Zirino A. (1988) High-resolution determination of the pH of the seawater with a flow-through system. Deep-Sea Res. 35, 197-208.

    Google Scholar 

  • Gattuso J.-P., Frankignoulle M. and Wollast R. (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29, 405-433.

    Google Scholar 

  • Gran G. (1952) Determination of the equivalence point in potentiometric titrations. Part II. Analysis 77, 661-671.

    Google Scholar 

  • Hansson I. and Jagner D. (1973) Evaluation of the accuracy of Gran plots by means of computer calculations. Anal. Chim. Acta 65, 363-373.

    Google Scholar 

  • Heip C. H. R., Goosen N. K., Herman P. J. M., Kromkamp J., Middelburg J. J. and Soetaert K. (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev. 33, 1-149.

    Google Scholar 

  • Körtzinger A., Thomas H., Schneider B., Gronau N., Mintrop L., and Duinker J. C. (1996) Atsea intercomparison of two newly designed underway pCO2 system-encouraging results. Mar. Chem. 52, 133-145.

    Google Scholar 

  • Lyman J. (1957) Buffer mechanism of seawater, Ph.D. thesis, University of California, Los Angeles, 186 pp.

    Google Scholar 

  • Mehrbach C., Culberson, C. H. Hawley J. E. and Pytkowicz R. M. (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897-907.

    Google Scholar 

  • Millero F. J. (1979) The thermodynamics of the carbonate system in seawater. Geochem. Cosmochem. Acta 43, 1651-1661.

    Google Scholar 

  • Millero F. J. (1986) The pH of estuarine waters. Limnol. Oceanogr. 31, 839-847.

    Google Scholar 

  • Pérez F. F. and Fraga F. (1987) The pH measurements in seawater on the NBS scale. Mar. Chem. 21, 315-327.

    Google Scholar 

  • Weiss R. F. (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203-215.

    Google Scholar 

  • Whitfield M., Butler R. A. and Covington A. K. (1986) The determination of pH in estuarine waters I. Definition of pH scales and the selection of buffers. Oceanol. Acta 8, 423-432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankignoulle, M., Borges, A.V. Direct and Indirect pCO2 Measurements in a Wide Range of pCO2 and Salinity Values (The Scheldt Estuary). Aquatic Geochemistry 7, 267–273 (2001). https://doi.org/10.1023/A:1015251010481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015251010481

Navigation