Skip to main content
Log in

Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

We evaluated the ability of pyridine-2,6-bis(thiocarboxylic acid) (pdtc) to form complexes with 19 metals and 3 metalloids. Pdtc formed complexes with 14 of the metals. Two of these metal:pdtc complexes, Co:(pdtc)2 and Cu:pdtc, showed the ability to cycle between redox states, bringing to 4 the number of known redox-active pdtc complexes. A precipitant formed when pdtc was added to solutions of As, Cd, Hg, Mn, Pb, and Se. Additionally, 14 of 16 microbial strains tested were protected from Hg toxicity when pdtc was present. Pdtc also mediated protection from the toxic effects of Cd and Te, but for fewer strains. Pdtc by itself does not facilitate iron uptake, but increases the overall level of iron uptake of Pseudomonas stutzeri strain KC and P. putida DSM301. Both these pseudomonads could reduce amorphous Fe(III) oxyhydroxide in culture. In vitro reactions showed that copper and pdtc were required for this activity. This reaction may derive its reducing power from the hydrolysis of the thiocarboxyl groups of pdtc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ankenbauer RG, Toyokuni T, Staley A, Rinehart Jr KL, Cox CD. 1988 Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol 170, 5344-5351.

    Google Scholar 

  • Begley TP, Xi J, Kinsland C, Taylor S, McLafferty F. 1999 The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr Opin Chem Biol 3, 623-629.

    Google Scholar 

  • Beveridge TJ, Hughes MN, Lee H et al. 1997. Metal-microbe interactions: contemporary approaches. In: Poole RK ed. Advances in Microbial Physiology. Academic Press, San Diego: Vol. 38, pp. 177-232.

    Google Scholar 

  • Poole RK. Metal-Microbe Interactions: Contemporary Approaches, San Diego:Academic Press.

  • Budzikiewicz H. 1993 Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 10, 209-228.

    Google Scholar 

  • Chambers CE, McIntyre DD, Mouck M, Sokol PA. 1996 Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia enterocolitica. Biometals 9, 157-167.

    Google Scholar 

  • Cornelis P, Hohnadel D, Meyer JM. 1989 Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect Immun 57, 3491-3497.

    Google Scholar 

  • Cox CD. 1986 Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun 52, 263-270.

    Google Scholar 

  • Cox CD. Rinehart KL, Jr, Moore ML, Cook JC, Jr 1981 Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78, 4256-4260.

    Google Scholar 

  • Criddle CS, DeWitt JT, Grbic-Galic D, McCarty PL. 1990 Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56, 3240-3246.

    Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ. 1991 Mechanisms of iron aquisition from siderophores by microorganisms and plants. Plant and Soil 130, 179-198.

    Google Scholar 

  • Duffy BK, Defago G. 1999 Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65, 2429-2438.

    Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S et al. 1998 Pilot-scale evaluation of bioaugmentation for in-situ remediation of carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32, 3598-3611.

    Google Scholar 

  • Dybas MJ, Tatara GM, Criddle CS. 1995 Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl Environ Microbiol 61, 758-762.

    Google Scholar 

  • Espinet P, Lorenzo C, Miguel JA. 1994 Palladium complexes with the tridentate dianionic ligand pyridine-2,6-bis(thiocarboxylate), ptdc. Crystal structure of (n-Bu4 N)[Pd(pdtc)Br]. Inorg Chem 33, 2052-2055.

    Google Scholar 

  • Fontecave M, Coves J, Pierre JL. 1994 Ferric reductases or flavin reductases? Biometals 7, 3-8.

    Google Scholar 

  • Fuqua C, Winans SC, Greenberg EP. 1996 Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50, 727-751.

    Google Scholar 

  • Gadd GM. 2000 Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11, 271-279.

    Google Scholar 

  • Hildebrand U, Ockels W, Lex J, Budzikiewicz H. 1983 Zur struktur eines 1:1-adduktes von pyridin-2,6-dicarbothiosäure und pyridin. Phosphorus and Sulfur 16, 361-364.

    Google Scholar 

  • Hildebrand U, Lex J, Taraz K et al. 1984 Untersuchungen zum redox-system bis-(pyridin-2,6-dicarbothioato)-ferrat(II)/-ferrat(III). Z Naturforsch 39b, 1607-1613.

    Google Scholar 

  • Hildebrand U, Taraz K, Budzikiewicz H, Korth H, Pulverer G. 1985 Dicyano-bis-(pyridin-2,6-dicarbothioato)-ferrat(II)/ferrat(III), ein weiteres eisenhaltiges redoxsystem aus der kulturlösung eines Pseudomonas-stammes. Z Naturforsch 40c, 201-207.

    Google Scholar 

  • Hildebrand UW, Lex J. 1989 Untersuchungen zur struktur von Co(III)-und Ni(II)-Komplexen der Pyridin-2,6-di(monothiocarbonsäure). Z Naturforsch 44b, 480.

    Google Scholar 

  • Ho, T-L. 1977 Hard and Soft Acids and Bases Principle in Organic Chemistry. New York: Academic Press.

    Google Scholar 

  • Hübner J, Taraz K, Budzikiewicz H. 1990 Acylsulfenic acids. Phosphorus Sulfur Silicon 47, 367-374.

    Google Scholar 

  • Jalal MAF, Hossain MB, van der Helm D et al. 1989 Structure of anguibactin, a unique plasmid related bacterial siderophore from the fish pathogen Vibrio anquillarum. J Am Chem Soc 111, 292.

    Google Scholar 

  • Krüger H-J, Holm RH. 1990 Stabilization of trivalent nickel in tetragonal NiS4N2 and NiN6 environments: Synthesis, structures, redox potentials, and observations related to [NiFe]-hydrogenases. J Am Chem Soc 112, 2955-2963.

    Google Scholar 

  • Lee C-H, Lewis TA, Paszczynski A, Crawford RL. 1999a Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261, 562-566.

    Google Scholar 

  • Lee C-H, Lewis TA, Paszczynski A, Crawford RL. 1999b erratum: Identification of an extracellular agent of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 265, 770.

    Google Scholar 

  • Lewis TA, CorteseMS, Sebat JL et al. 2000 A Pseudomonas stutzeri gene cluster encoding biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Environ Microbiol 2, 407-416.

    Google Scholar 

  • Lewis TA, Paszczynski A, Gordon-Wylie SW et al. 2001 Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ Sci Technol 35, 552-559.

    Google Scholar 

  • Lovley DR, Phillips EJP. 1986 Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683-689.

    Google Scholar 

  • Maier RM, Soberon-Chavez G. 2000 Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54, 625-633.

    Google Scholar 

  • Meyer JM, Abdallah MA. 1978 The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107, 319-328.

    Google Scholar 

  • Meyer JM, Hohnadel D, Khan A, Cornelis P. 1990 Pyoverdin-facilitated iron uptake in Pseudomonas aeruginosa: immunological characterization of the ferripyoverdin receptor. Mol Microbiol 4, 1401-1405.

    Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H et al. 2000 Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66, 487-492.

    Google Scholar 

  • Naegeli H-U, Zähner H. 1980 Stoffwechselprodukte von Microorganismen: Ferrithiocin. Helvetica Chemica Acta 63, 1400.

    Google Scholar 

  • Neu MP, Johnson MT, Matonic JH, Scott BL. 2001 Actinide interactions with microbial chelators: the dioxobis[pyridine-2,6-bis(monothiocarboxylato)]uranium(VI) ion. Acta Crystallogr C 57, 240-242.

    Google Scholar 

  • Neuenhaus W, Budzikiewicz H, Korth H, Pulverer G. 1980 8-Hydroxy-4-methoxy-monothiochinaldinsäure-eine weitere thiosäure aus Pseudomonas. Z Naturforsch 35b, 1569-1571.

    Google Scholar 

  • Nyman MD, Hampden-Smith MJ, Duesler EN. 1997 Synthesis, characterization, and reactivity of group 12 metal thiocarboxylates, M(SOCR)2Lut2 [M = Cd, Zn; R = CH3, C(CH3)3; Lut = 3,5-dimethylpyridine (Lutidine)]. Inorg Chem 36, 2218-2224.

    Google Scholar 

  • Ockels W, Römer A, Budzikiewicz H. 1978 An Fe(III) complex of pyridine-2,6-di-(monothiocarboxylic acid): A novel bacterial metabolic product. Tetrahedron Lett 36, 3341-3342.

    Google Scholar 

  • Sebat JL, Paszczynski AJ, Cortese MS, Crawford RL. 2001 Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol, 67, 3934-3942.

    Google Scholar 

  • Sepulveda-Torres LC, Rajendran N, Dybas MJ, Criddle CS. 1999 Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch Microbiol 171, 424-429.

    Google Scholar 

  • Stolworthy JC, Paszczynski AJ, Korus R, Crawford RL. 2001 Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Bioremediation (in press).

  • Stookey LL. 1970 Ferrozine-a new spectrophotometric reagent for iron. Anal Chem 42, 779-781.

    Google Scholar 

  • Timmerman MM, Woods JP. 1999 Ferric reduction is a potential iron acquisition mechanism for Histoplasma capsulatum. Infect Immun 67, 6403-6408.

    Google Scholar 

  • Vachee A, Mossel DA, Leclerc H. 1997 Antimicrobial activity among Pseudomonas and related strains of mineral water origin. J Appl Microbiol 83, 652-658.

    Google Scholar 

  • Vartivarian SE, Cowart RE. 1999 Extracellular iron reductases: Identification of a new class of enzymes by siderophore-producing microorganisms. Arch Biochem Biophys 364, 75-82.

    Google Scholar 

  • Visca P, Colotti G, Serino L et al. 1992 Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58, 2886-2893.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortese, M.S., Paszczynski, A., Lewis, T.A. et al. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. Biometals 15, 103–120 (2002). https://doi.org/10.1023/A:1015241925322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015241925322

Navigation