Skip to main content
Log in

Population dynamics and habitat connectivity affecting the spatial spread of populations – a simulation study

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In this paper we show how the spatialconfiguration of habitat quality affects the spatial spread of apopulation in a heterogeneous environment. Our main result is thatfor species with limited dispersal ability and a landscape withisolated habitats, stepping stone patches of habitat greatlyincrease the ability of species to disperse. Our results showthat increasing reproductive rate first enables and thenaccelerates spatial spread, whereas increasing the connectivity has aremarkable effect only in case of low reproductive rates. Theimportance of landscape structure varied according to thedemographic characteristics of the population. To show this wepresent a spatially explicit habitat model taking into accountpopulation dynamics and habitat connectivity. The population dynamicsare based on a matrix projection model and are calculated on eachcell of a regular lattice. The parameters of the Leslie matrix dependon habitat suitability as well as density. Dispersal between adjacentcells takes place either unrestricted or with higher probability inthe direction of a higher habitat quality (restricted dispersal).Connectivity is maintained by corridors and stepping stones ofoptimal habitat quality in our fragmented model landscape containinga mosaic of different habitat suitabilities. The cellular automatonmodel serves as a basis for investigating different combinations ofparameter values and spatial arrangements of cells with high and lowquality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler G.H. and Wilson M.L. 1985. Small mammals on Massachusetts islands: the use of probability functions in clarifying biogeographic relationships. Oecologia 66: 178-186.

    Google Scholar 

  • Akçakaya H.R. and Atwood J.L. 1997. A habitat-based metapopulation model of the california gnatcatcher. Conserv. Biol. 11: 422-434.

    Article  Google Scholar 

  • Akçakaya H.R., McCarthy M.A. and Pearce J.L. 1995. Linking landscape data with population viability analysis: management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biol. Conserv. 73: 169-176.

    Article  Google Scholar 

  • Amarasekare P. 1998. Interactions between local dynamics and dispersal: insights from single species models. Theor. Popul. Biol. 53: 44-59.

    Article  CAS  PubMed  Google Scholar 

  • Andrén H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355-366.

    Google Scholar 

  • Appelt M. and Poethke H.J. 1997. Metapopulation dynamics in a regional population of the blue-winged grasshopper Oedipoda caerulescens; Linnaeus, 1758. J. Insect Conserv. 1: 205-214.

    Article  Google Scholar 

  • Bascompte J. and Solé R.V. (eds) 1998. Modeling Spatiotemporal Dynamics in Ecology. Springer, Berlin, Germany.

    Google Scholar 

  • Botsford L.W. 1996. Dynamics of populations with density-dependent recruitment and age structure. In: Tuljapurkar S. and Caswell H. (eds), Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Chapman and Hall, New York, NY, USA, pp. 371-408.

    Google Scholar 

  • Bowne D.R., Peles J.D. and Barrett G.W. 1999. Effects of landscape spatial structure on movement patterns of the hispid cotton rat Sigmodon hispidus. Landscape Ecol. 14: 53-66.

    Article  Google Scholar 

  • Brooker L., Brooker M. and Cale P. 1999. Animal dispersal in fragmented habitat: measuring habitat connectivity, corridor use, and dispersal mortality. Cons. Ecol. 3.

  • Burgman M.A., Ferson S. and Akçakaya H.R. 1993. Risk Assessment in Conservation Biology. Chapman and Hall, London, UK.

    Google Scholar 

  • Cantwell M.D. and Forman R.T.T. 1993. Landscape graphs: Ecological modeling with graph theory to detect configurations common to diverse landscapes. Landscape Ecol. 8: 239-255.

    Article  Google Scholar 

  • Caswell H. 1989. Matrix Population Models-Construction, Analysis, and Interpretation. Sinauer Associates Inc., Sunderland, Massachusetts, USA.

    Google Scholar 

  • Caswell H. 1996. Matrix methods in population analysis. In: Tuljapurkar S. and Caswell H. (eds), Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Chapman and Hall, New York, NY, USA, pp. 19-58.

    Google Scholar 

  • Czárán T. 1998. Spatiotemporal Models of Population and Community Dynamics. Chapman and Hall, London, UK.

    Google Scholar 

  • Czárán T. and Iwasa Y. 1998. Spatiotemporal models of population and community dynamics. Trends Ecol. Evol. 13: 294-295.

    Google Scholar 

  • DeAngelis D.L. 1988. Strategies and difficulties of applying models to aquatic populations and food webs. Ecol. Model. 43: 57-73.

    Article  Google Scholar 

  • Di Cola G., Gilioli G. and Baumgärtner J. 1999. Mathematical models for age-structured population dynamics. In: Huffaker C.B. and Gutierrez A.P. (eds), Ecological Entomology. John Wiley & Sons, New York, NY, USA, pp. 503-536.

    Google Scholar 

  • Doak D.F., Marino P.C. and Kareiva P.M. 1992. Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor. Popul. Biol. 41: 315-336.

    Article  Google Scholar 

  • Dunning J.B., Stewart D.J., Danielson B.J., Noon B.R., Root T.L., Lamberson R.H. et al. 1995. Spatially explicit population models: Current forms and future uses. Ecol. Appl. 5: 3-11.

    Google Scholar 

  • Fahrig L. 1991. Simulation methods for developing general landscape-level hypotheses of single-species dynamics. In: Turner M.G. and Gardner R.H. (eds), Quantitative Methods in Landscape Ecology-The Analysis and Interpretation of Landscape Heterogeneity. Springer, New York, NY, USA, pp. 417-442.

    Google Scholar 

  • Fahrig L. 1998. When does fragmentation of breeding habitat affect population survival? Ecol. Model 105: 273-292.

    Article  Google Scholar 

  • Gardner R.H., O’Neill R.V. and Turner M.G. 1993. Ecological implications of landscape fragmentation. In: McDonnell M.J. and Pickett S.T.A. (eds), Humans as Components of Ecosystems-The Ecology of Subtle Human Effects and Populated Areas. Springer, New York, NY, USA, pp. 208-226.

    Google Scholar 

  • Gardner R.H., O’Neill R.V., Turner M.G. and Dale V.H. 1989. Quantifying scale-dependent effects of animal movement with simple percolation models. Landscape Ecol 3: 217-227.

    Article  Google Scholar 

  • Griebeler E.M. and Gottschalk E. 2000. An individual based model of the impact of suboptimal habitat on survival of the grey bush cricket, Platycleis albopunctata (Orthoptera: Tettigoniidae). J. Insect Conserv. 4: 225-237.

    Article  Google Scholar 

  • Gustafson E.J. 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1: 143-156.

    Article  Google Scholar 

  • Hanski I., Pakkala T., Kuussaari M. and Lei G. 1995. Metapopulation persistence of an endangered butterfly in a fragmented landscape. Oikos 72: 21-28.

    Google Scholar 

  • Henein K. and Merriam G. 1990. The elements of connectivity where corridor quality is variable. Landscape Ecol. 4: 157-170.

    Article  Google Scholar 

  • Hosmer D.W. and Lemeshow S. 1989. Applied Logistic Regression. Wiley, New York, NY, USA, 307 pp.

    Google Scholar 

  • Hughes T.P. and Connell J.H. 1987. Population dynamics based on size or age? A reef coral analysis. Am. Nat. 129: 818-829.

    Article  Google Scholar 

  • Ingrisch S. and Köhler G. 1998. Die Heuschrecken Mitteleuropas. Westarp Wissenschaften, Magdeburg, Germany.

    Google Scholar 

  • Jeltsch F., Milton S.J., Dean W.R.J., van Rooyen N. and Moloney K.A. 1998. Modelling the impact of small-scale heterogeneities on tree-grass coexistence in semi-arid savannas. J. Ecol. 86: 780-793.

    Article  Google Scholar 

  • Kareiva P.M. 1990. Population dynamics in spatially complex environments: theory and data. Phil. Trans. R. Soc. Lond. B 330: 175-190.

    Google Scholar 

  • Keitt T.H., Urbam D.L. and Milne B.T. 1997. Detecting critical scales in fragmented landscapes. Cons. Ecol. 1.

  • Kleyer M., Kratz R., Lutze B. and Schröder B. 1999/2000. Habitatmodelle für Tierarten: Entwicklung, Methoden und Perspektiven für die Anwendung. Z. Ökologie u. Naturschutz 8: 177-194.

    Google Scholar 

  • Law R. and Edley M.T. 1990. Transient dynamics of populations with age-and size-dependent vital rates. Ecology 71: 1863-1870.

    Google Scholar 

  • Lefkovitch L.P. 1965. The study of population growth in organisms grouped by stages. Biometrics 21: 1-18.

    Google Scholar 

  • Leslie P.H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183-212.

    Google Scholar 

  • Letcher B.H., Priddy J.A., Walters J.R. and Crowder L.B. 1998. An individual-based, spatially-explicit simulation model of the population dynamics of the endangered red-cockaded woodpecker, Picoides borealis. Biol. Conserv. 86: 1-14.

    Article  Google Scholar 

  • Lindenmayer D.B. and Possingham H.P. 1996. Modelling the inter-relationships between habitat patchiness, dispersal capability and metapopulations persistence of the endangered species, Leadbeater’s possum, in south-eastern Australia. Landscape Ecol. 11: 79-106.

    Google Scholar 

  • McIntyre N.E. and Wiens J.A. 1999. Interactions between habitat abundance and configuration: experimental validation of some predictions from percolation theory. Oikos 86: 129-137.

    Google Scholar 

  • Milne B.T., Johnson A.R., Keitt T.H., Hatfield C.A., David J. and Hraber P.T. 1996. Detection of critical densities associated with piñon-juniper woodland ecotones. Ecology 77: 805-821.

    Google Scholar 

  • Morrison M.L., Marcot B.G. and Mannan R.W. 1998. Wildlife-Habitat Relationships-Concepts and Applications. University of Wisconsin Press, Madison, Wisconsin, USA.

    Google Scholar 

  • O’Neill R.V., Milne B.T., Turner M.G. and Gardner R.H. 1988. Resource utilization scales and landscape pattern. Landscape Ecol. 2: 63-69.

    Article  Google Scholar 

  • Phipps M.J. 1992. From local to global: The lesson of cellular automata. In: DeAngelis D.L. and Gross L.J. (eds), Individual-Based Models and Approaches in Ecology. Chapman and Hall, New York, NY, USA, pp. 165-187.

    Google Scholar 

  • Poff N.L. and Nelson-Baker K. 1997. Habitat heterogeneity and algal-grazer interactions in streams: Explorations with a Spatially Explicit Model. J. N. Am. Benthol. Soc. 16: 263-276.

    Google Scholar 

  • Root K.V. 1998. Evaluating the effects of habitat quality, connectivity, and catastrophes on a threatened species. Ecol. Appl. 8: 854-865.

    Google Scholar 

  • Ruxton G.D. 1996. Density-dependent migration and stability in a system of linked populations. Bull. Math. Biol. 58: 643-660.

    Article  Google Scholar 

  • Schröder B. 2000. Zwischen Naturschutz und Theoretischer Ökologie: Modelle zur Habitateignung und räumlichen Populationsdynamik für Heuschrecken im Niedermoor. PhD Dissertation, TU Braunschweig, Braunschweig, Germany.

    Google Scholar 

  • Schröder B. and Richter O. 1999/2000. Are habitat models transferable in space and time? Z. Ökologie u. Naturschutz 8: 195-205.

    Google Scholar 

  • Schumaker N.H. 1996. Using landscape indices to predict habitat connectivity. Ecology 77: 1210-1225.

    Google Scholar 

  • Söndgerath D. and Müller-Pietralla W. 1996. A model for the development of the cabbage root fly Delia radicum L. based on the Extended Leslie Model. Ecol. Model 91: 67-76.

    Article  Google Scholar 

  • Stauffer D. and Aharony A. 1991. Introduction to Percolation Theory. Taylor and Francis, London, UK.

    Google Scholar 

  • Storm G.L., Yahner R.H. and Bellis E.D. 1993. Vertebrate abundance and wildlife habitat suitability near the Palmerton Zinc Smelters, Pennsylvania. Arch. Environm. Contam. Toxicol 25: 428-437.

    Google Scholar 

  • Szacki J. 1999. Spatially structured populations: how much do they match the classic metapopulation concept? Landscape Ecol. 14: 369-380.

    Article  Google Scholar 

  • Taylor P.D., Fahrig L., Henein K. and Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68: 571-573.

    Google Scholar 

  • Tilman D., Lehman C.L. and Kareiva P. 1997. Population dynamics in spatial habitats. In: Tilman D. and Kareiva P. (eds), Spatial Ecology-The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, Princeton, New Jersey, USA, pp. 3-20.

    Google Scholar 

  • Travis J.M.J. and Dytham C. 1998. The Evolution of Dispersal in a Metapopulation: A Spatially Explicit, Individual-Based Model. Proc. R. Soc. Lond. B 265: 17-23.

    Article  Google Scholar 

  • Trexler J.C. and Travis J. 1993. Nontraditional regression analyses. Ecology 74: 1629-1637.

    Google Scholar 

  • Turner M.G. 1989. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20: 171-197.

    Article  Google Scholar 

  • U.S. Fish and Wildlife Services 1980. Habitat Evaluation Procedures HEP. USDI Fish and Wildlife Services. Division of Ecological Services, Washington, DC, USA.

    Google Scholar 

  • Wagner T.L., Wu H., Sharpe P.J.H. and Coulson R.N. 1984. Modelling distribution of insect development times: a literature review and application of the Weibull function. Ann. Entomol. Soc. Am. 775: 475-483.

    Google Scholar 

  • Weimar J.R. 1997. Simulation with Cellular Automata. Logos-Verlag, Berlin, Germany, 19 pp.

    Google Scholar 

  • Wiegand T., Moloney K.A., Naves J. and Knauer F. 1999. Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective. Am. Nat. 154: 605-627.

    Article  PubMed  Google Scholar 

  • Wiens J.A. 1995. Landscape mosaics and ecological theory. In: Hansson L., Fahrig L. and Merriam G. (eds), Mosaic Landscapes and Ecological Processes. Chapman and Hall, London, UK, pp. 1-26.

    Google Scholar 

  • Wiens J.A. and Milne B.T. 1989. Scaling of “landscapes” in landscape ecology, or landscape ecology from a beetle’s perspective. Landscape Ecol. 3: 87-96.

    Article  Google Scholar 

  • Wiens J.A., Schooley R.L. and Weeks R.D. 1997. Patchy landscapes and animal movements: Do beetles percolate? Oikos 78: 257-264.

    Google Scholar 

  • Wiens J.A., Stenseth N.C., Horne B.V. and Ims R.A. 1993. Ecological mechanisms and landscape ecology. Oikos 66: 369-380.

    Google Scholar 

  • Wissel C. 1991. A model for the mosaic-cycle concept. In: Remmert H. (ed.), The Mosaic-Cycle Concept in Ecosystems. Springer, Berlin, Germany, pp. 22-45.

    Google Scholar 

  • With K.A. 1994. Using fractal analysis to assess how species perceive landscape structure. Landscape Ecol. 9: 25-36.

    Article  Google Scholar 

  • With K.A. and Crist T.O. 1995. Critical thresholds in species’ responses to landscape structure. Ecology 76: 2446-2459.

    Google Scholar 

  • With K.A., Gardner R.H. and Turner M.G. 1997. Landscape connectivity and population distributions in heterogeneous environments. Oikos 78: 151-169.

    Google Scholar 

  • With K.A. and King A.W. 1999. Extinction thresholds for species in fractal landscapes. Conserv. Biol. 13: 314-326.

    Article  Google Scholar 

  • Tischendorf and Fahrig 2000a. On the usage and measurement of landscape connectivity. OIKOS 90: 7-19.

    Article  Google Scholar 

  • Tischendorf and Fahrig 2000b. How should we measure landscape connectivity? Landscape Ecol. 15: 633-641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söndgerath, D., Schröder, B. Population dynamics and habitat connectivity affecting the spatial spread of populations – a simulation study. Landscape Ecol 17, 57–70 (2002). https://doi.org/10.1023/A:1015237002145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015237002145

Navigation