Skip to main content
Log in

Set-Valued Observers for Control Systems

  • Published:
Dynamics and Control

Abstract

We extend the usual definition of observers with known inputs to nonlinear dynamic systems that are not completely observable. To achieve this, we use set-valued analysis and invariance tools. In particular, the set of indistinguishable states that plays a key role in the problem is characterized in terms of an invariance kernel. A numerical example illustrates the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J. P., Viability Theory, Birkhäuser: Basel, 1991.

    Google Scholar 

  2. Aubin, J. P. and Frankowska, H., Set-Valued Analysis, Birkhäuser: Basel, 1990.

    Google Scholar 

  3. Bestle, D. and Zeitz, M., “Canonical form observer design for nonlinear time variable systems, ” Internat. J. Control, Vol. 38, pp. 419–431, 1993.

    Google Scholar 

  4. Clarke, F. H., Ledyaev, Y. S., Stern, R. J. and Wolenski, P. R., “Qualitative properties of trajectories of control systems: A survey, ” J. Dyn. Control Systems, Vol. 1, pp. 1–48, 1995.

    Google Scholar 

  5. Davis, M. H. A. and Marcus, S. I., An introduction to nonlinear filtering, in Hazewinkel, M. and Willems, J. C. (eds), Stochastic Systems: the Mathematical of Filtering and Identification and Applications, D. Reichel: Dordrecht, pp. 53–76, 1981.

    Google Scholar 

  6. Frankowska, H., “Lower semi-continuous solutions of Hamilton-Jacobi equations, ” SIAM J. Control Optim., Vol. 31, No. 1, pp. 257–272, 1993.

    Google Scholar 

  7. Gauthier, J. P. and Kupka, I., “Observability and observers for nonlinear systems, ” SIAM J. Control Optim., Vol. 32, No. 4, pp. 975–994, 1994.

    Google Scholar 

  8. Gauthier, J. P. and Kupka, I., “Deterministic observation theory and applications, ” Rapport de recherche, No. 187, Université de Bourgogne, France, 1999.

    Google Scholar 

  9. Geld, A., Applied Optimal Estimation, MIT Press: Cambridge, MA, 1974.

    Google Scholar 

  10. Gouzé, J.-L., Rapaport, A. and Hadj-Sadok, Z., “Interval observers for uncertain biological systems, ” Ecological Modelling, Vol. 133, No. 1, pp. 45–56, 2000.

    Google Scholar 

  11. Isidori, A., Nonlinear Control Theory, 2nd edn, Springer: Berlin, 1989.

    Google Scholar 

  12. Kailath, T., Linear Systems, Prentice-Hall: Englewood Cliffs, NJ, 1980.

    Google Scholar 

  13. Kalman, R. E., “A new approach to linear filtering and prediction problems, ” Trans. ASME D (Basic Engineering), Vol. 82, pp. 35–45, 1960.

    Google Scholar 

  14. Kalman, R. E. and Bucy, R. S., “New results linear filtering and prediction theory, ” Trans. ASME D (Basic Engineering), Vol. 83, pp. 95–108, 1961.

    Google Scholar 

  15. Kang, W. and Krener, A. J., “Nonlinear observer design, a backstepping approach, ” Personnal communication.

  16. Krener, A. J., “Necessary and sufficient conditions for nonlinear H worst case control and estimation, ” J. Math. Systems Estimation Control, Vol. 7, No. 1, pp. 81–105, 1997.

    Google Scholar 

  17. Krener, A. J. and Isidori, A., “Linearization by output injection and nonlinear observers, ” Systems Control Lett., Vol. 3, pp. 47–52, 1983.

    Google Scholar 

  18. Krener, A. J. and Respondek, A., “Nonlinear observers with linearizable error, ” SIAM J. Control Optim., Vol. 23, pp. 197–216, 1985.

    Google Scholar 

  19. Levine, J. and Marino, R., “Nonlinear system immersion, observers and finite-dimensional filters, ” Systems Control Lett., Vol. 7, pp. 133–142, 19860.

    Google Scholar 

  20. Luenberger, D. G., “Observing the state of a linear system, ” IEEE Trans. Military Electronics, Vol. 8, pp. 74–80, 1964.

    Google Scholar 

  21. Misawa, E. A. and Hedrick, J. K., “Nonlinear observers, a state of the art survey, ” Trans. ASME J. Dynamic Systems Measm. Control, Vol. 111, pp. 344–352, 1989.

    Google Scholar 

  22. Nijmeijer, H. and Fossen, T. I., “New directions in nonlinear observer design, ” in Lecture Notes in Control and Information Sciences Vol. 244, Springer: Berlin, 1999.

    Google Scholar 

  23. Nijmeijer, H. and Van der Schaft, A. J., Nonlinear Dynamical Control Systems, Springer: Berlin, 1990.

    Google Scholar 

  24. Rapaport, A. and Gouzé, J. L., “Practical and polytopic observers for nonlinear uncertain systems, ” Submitted to Internat. J. Control, 2000.

  25. Rapaport, A. and Maloum, A., “About embedding for exponential observers, ” in IEEE Conf. on Decision and Control, Sydney, 2000.

  26. Sontag, E. D., Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer: Berlin, 1990.

    Google Scholar 

  27. Wiener,Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications, MIT Technology Press: Cambridge, MA, 1949.

  28. Xia, X. and Zeitz, M., “On nonlinear continuous observers, ” Internat. J. Control, Vol. 66, No.6, pp.943–954,1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyen, L., Rapaport, A. Set-Valued Observers for Control Systems. Dynamics and Control 11, 283–296 (2001). https://doi.org/10.1023/A:1015236405696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015236405696

Navigation