Skip to main content
Log in

The regulatory network controlling β-globin gene switching

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The human globin gene cluster, which represents a prototypical eukaryotic multigene locus, has been investigated for more than two decades and is classic model for coordinate control of tissue-specific gene expression. It is well known that globin gene expression is restricted to specific tissues and that globin genes are sequentially switched on during development. What intricate regulatory mechanisms account for tissue-specific transcriptional control of globin gene expression? Previous studies have focused on the interactions of trans-acting factors and cis-acting elements including the locus control region (LCR), which is considered a potent enhancer in globin gene switching. More recent studies have not only focused on the local DNA regulatory elements but also on remodelling of chromatin and transcription at the globin gene cluster within the native genomic context. Moreover, several studies have presented extensive data that address whether the LCR is required to open the chromatin. Although there is increased insight into the regulation of the β-globin gene switching, many aspects relating to the developmental activation of distinct globin genes remain elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Enver T, Raich N, Ebens AJ, Papayannopoulou T, Cotantini FS & Stamatoyannopoulos G (1990) Nature 344: 309–313

    Google Scholar 

  2. Grosveld F, Van Assendelft GB, Greaves DR & Kollias G (1987) Cell 51: 975–985

    Google Scholar 

  3. Milot E, Strouboulis J, Trimborn T, Wijgerde M, de Boer E, Langeveld A, Tan-Un K, Vergeer W, Yannoutsos N, Grosveld F & Fraser P (1996) Cell 87: 105–114

    Google Scholar 

  4. Peterson KR, Clegg CH, Navas PA, Norton EJ, Kimbrough TG & Stamatoyannopoulos G (1996) Proc. Natl. Acad. Sci. USA 93: 6605–6609

    Google Scholar 

  5. Navas PA, Peterson KR, Li Q, Skarpidi E, Rohde A, Shaw SE, Clegg CH, Asano H & Stamatoyannopoulos G (1998) Mol. Cell. Biol. 18: 4188–4196

    Google Scholar 

  6. Forreste WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T & Groudine M (1990) Genes Dev. 4: 1637–1649.

    Google Scholar 

  7. Aladjem MI, Groudine M, Brody LL, Dieken ES, Fournier REK, Wahl GM & Epner EM (1995) Science 270: 815–819

    Google Scholar 

  8. Bender MA, Mehaffey GM, Telling A, Hug B, Ley TJ, Groudine M & Fiering S (2000) Blood 95: 3600–3604

    Google Scholar 

  9. Hanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N & Grosveld F (1991) Genes Dev. 5: 1387–1394

    Google Scholar 

  10. Bauchwitz R & Costantini F (2000) Human Mol. Genet. 9: 561–574

    Google Scholar 

  11. Magram J, Chada K & Costantini F (1985) Nature 315: 338–340

    Google Scholar 

  12. Bulger M & Groudine M (1999) Genes Dev. 13: 2464–2477

    Google Scholar 

  13. Wijgerde M, Grosveld F & Fraser P (1995) Nature 377: 209–213

    Google Scholar 

  14. Gribnau J, de Boer E, Trimborn T, Wijgerde M, Milot E, Grosveld F & Fraser P (1998) EMBO J. 17: 6020–6027

    Google Scholar 

  15. Engel JD & Tanimoto K (2000) Cell 100: 499–502

    Google Scholar 

  16. Kollias G, Wrighton N, Hurst, J & Grosveld F (1986) Cell 46: 89–94

    Google Scholar 

  17. Jane SM & Cunningham JM (1996) Int. J. Biochem. Cell Biol. 28: 1197–1209

    Google Scholar 

  18. Jane SM, Ney PA, Vanin EF, Gumucio DL & Nienhuis AW (1992) EMBO J. 11: 2961–2969

    Google Scholar 

  19. Foley KP & Engel JD (1992) Genes Dev. 6: 730–744

    Google Scholar 

  20. Sargent TG, Dubois CC, Buller AM & Lyoid JA (1999) J. Biochem. 274: 11229–11236

    Google Scholar 

  21. Zhu BW, Tomhon C, Mason M, Campbell T, Shelden E, Richards N, Goodman M & Gumucio DL (1999) Blood 93: 3540–3549

    Google Scholar 

  22. Francastel C, Walters MC, Groudine M & Martin DI (1999) Cell 99: 259–269

    Google Scholar 

  23. Asano H & Stamatoyannopoulos G (1998) Mol. Cel. Biol. 8: 102–109

    Google Scholar 

  24. Lee JS, Ngo H, Kim D & Chung JH (2000) Proc. Natl. Acad. Sci. U S A. 97: 2468–2473

    Google Scholar 

  25. Perkins AC, Gaensler KM & Orkin SH (1996) Proc. Natl. Acad. Sci. USA 93: 12267–12271

    Google Scholar 

  26. Wijgerde M, Gribnau J, Trimborn T, Nuez B, Philipsen S, Grosveld F & Fraser P (1996) Genes Dev. 10: 2894–2902

    Google Scholar 

  27. Guy LG, Delvoye N & Wall L (2000) J. Biol. Chem. 275: 3675–3680

    Google Scholar 

  28. Lee JS, Lee CH & Chung JH (1999) Proc. Natl. Acad. Sci. USA 96: 10051–10055

    Google Scholar 

  29. Tanimoto K, Liu Q, Grosveld F, Bungert J & Engel JD (2000) Gene Dev. 14: 2778–2794

    Google Scholar 

  30. Pandya K, Donze D & Townes TM (2001) J. Biol. Chem. 276: 8239–8243

    Google Scholar 

  31. Perkins AC, Peterson KR, Stamatoyannopoulos G, Witkowska HE & Orkin SH (2000) Blood 95: 1827–1832

    Google Scholar 

  32. Asano H, Li XS & Stamatoyannopoulos G (2000) Blood 95: 3578–3584

    Google Scholar 

  33. Cunningham JM, Vanin EF, Tran N, Valentin M & Jan SM (1995) Genomics 30: 398–399

    Google Scholar 

  34. Zhou W, Clouston DR, Wang X, Cerruti L, Cunningham JM & Jane SM (2000) Mol. Cell. Biol. 20: 7662–7672

    Google Scholar 

  35. Shelton DA, Stegman L, Hardison R, Miller W, Bock JH, Slightom JM, Goodman M & Gumucio DL (1997) Blood 89: 3457–3469

    Google Scholar 

  36. Filipe A, Li Q, Deveaux S, Godin I, Romeo PH, Stamatoyannopoulos G & Mignotte V (1999) EMBO J. 18: 687–697

    Google Scholar 

  37. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD & Jenuwein T (2000) Nature 406: 593–599

    Google Scholar 

  38. Orphanides G & Reinbergt D (2000) Nature 407: 471–475

    Google Scholar 

  39. Schübeler D, Francastel C, Cimbora DM, Reik A, Martin DIK & Groudine M (2000) Genes Dev. 14: 940–950

    Google Scholar 

  40. Bell AC & Felsenfeld G (2000) Nature 405: 482–485

    Google Scholar 

  41. Armstrong JA, Bieker JJ & Emerson BM (1998) Cell 95: 93–104

    Google Scholar 

  42. Lee CH, Murphy MR, Lee JS & Chung JH (1999) Proc. Natl. Acad. Sci. USA 96: 12311–12315

    Google Scholar 

  43. Shen X, Mizuguchi G, Hamiche A & Wu C (2000) Nature 406: 541–544

    Google Scholar 

  44. O'neill D, Yang J, Erdjument-Bromage H, Bornschlegel K, Tempst P & Bank A (1999) Proc. Natl. Acad. Sci. USA 96: 349–354

    Google Scholar 

  45. Ashe HL, Monks J, Wijgerde M, Fraser P & Proudfoot NJ (1997) Genes Dev. 11: 2497–2509

    Google Scholar 

  46. Gribnau J, Diderich K, Pyuzina S, Calzolari R & Frazer P (2000) Mol. cell 5: 377–386

    Google Scholar 

  47. Mihaly J, Hogga I, Barges S, Galloni M, Mishra RK, Hagstrom K, Muller M, Sohedl P, Sipos L, Gausz J, Gyurkovics H & Karch F (1998) Cell Mol Life Sci. 54: 60–70

    Google Scholar 

  48. Bender MA, Bulger M, Close J & Groudine M (2000) Mol. Cell 5: 387–393

    Google Scholar 

  49. Rogan DF, Cousins DJ & Staynov DZ (1999) Biochem Biophys Res Commun. 255: 556–561

    Google Scholar 

  50. Tanimoto K, Liu Q, Bungert J & Engel JD (1999) Nature 398: 344–348

    Google Scholar 

  51. Alami R, Greally JM, Tanimoto K, Hwang S, Feng R, Engel JD, Fiering S & Bouhassira EE (2000) Human Mol. Genet. 9: 631–636

    Google Scholar 

  52. Festenstien R, Toliani M, Corbella P, Mamalaki C, Parrington J, Fox M, Milioll A, Janes M & Kioussis D (1996) Science 271: 1123–1125

    Google Scholar 

  53. Anne F, Li Q, Deveaux S, Godin L, Roméo P, Stamatoyannopoulos G & Mignotte V (1999) EMBO J. 18: 687–697

    Google Scholar 

  54. Magdaleno SM & Curran T (1999) Gene dosage in mice - BAC to the future. Nature Genet. 22: 319–320

    Google Scholar 

  55. Huang Y, Liu DP, Wu L, Li TC, Wu M, Feng DX & Liang CC (2000) Blood Cells Mol. Dis. 26: 598–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Liu, DP. & Liang, CC. The regulatory network controlling β-globin gene switching. Mol Biol Rep 28, 175–183 (2001). https://doi.org/10.1023/A:1015226103934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015226103934

Navigation