Ukrainian Mathematical Journal

, Volume 53, Issue 10, pp 1728–1734 | Cite as

Periodic Atomic Quasiinterpolation

  • M. A. Basarab


We consider the approximation of periodic functions by using the atomic quasiinterpolation of the second and the first order. We obtain expressions for the coefficients of quasiinterpolants and present estimates for errors in the uniform metric.


Periodic Function Present Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Rvachev and V. A. Rvachev, Nonclassical Methods of Approximation Theory in Boundary-Value Problems [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  2. 2.
    E. A. Fedotova, “On interpolation using atomic functions,” Mat. Met. Analiz. Dinam. Sist., Issue 1, 34–38 (1977).Google Scholar
  3. 3.
    E. A. Fedotova, Atomic and Spline-Approximation of Solutions of Boundary-Value Problems in Mathematical Physics [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Kharkov (1985).Google Scholar
  4. 4.
    R. S. Varga, Functional Analysis and Approximation Theory in Numerical Analysis, SIAM, Philadelphia (1971).Google Scholar
  5. 5.
    N. P. Korneichuk, Splines in Approximation Theory [in Russian], Nauka, Moscow (1984).Google Scholar
  6. 6.
    Yu. S. Zav'yalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions [in Russian], Nauka, Kiev (1980).Google Scholar
  7. 7.
    A. A. Ligun, “On the approximation of differentiable periodic functions by local splines of minimum defect,” Ukr. Mat. Zh., 33, No. 5, 691–693 (1981).Google Scholar
  8. 8.
    S. G. Dronov and A. A. Ligun, “Some duality relations for local splines,” Ukr. Mat. Zh., 47, No. 1, 12–19 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • M. A. Basarab
    • 1
  1. 1.Institute for Problems of Machine BuildingUkrainian Academy of SciencesKharkov

Personalised recommendations