Skip to main content

Can the Enhanced Renal Clearance of Antibiotics in Cystic Fibrosis Patients Be Explained by P-Glycoprotein Transport?


Purpose. To investigate in vitro if P-glycoprotein (P-gp) transport can differentiate between antibiotic drugs exhibiting increased active renal clearance (CLr) in cystic fibrosis (CF) patients (i.e., dicloxacillin, trimethoprim) and drugs that do not exhibit this phenomenon (i.e., cefsulodin, sulfamethoxazole).

Methods. Transport studies were carried out in MDCK (wild type) and MDR1-MDCK (P-gp overexpressing) cells that were grown to confluence on Transwell inserts. [14C]-mannitol transport and transepithelial electrical resistance (TEER) were measured to validate the integrity of the cells. Drug concentrations were analyzed using HPLC.

Results. Dicloxacillin and trimethoprim are substrates of P-gp (B→A/A→B ratios in MDR1-MDCK cells are 32 and 50, respectively). P-gp inhibitors (i.e., GG918, cyclosporine, ketoconazole, vinblastine) decreased the B→A transport of dicloxacillin and trimethoprim and increased the A→B transport of trimethoprim while non-P-gp inhibitors (e.g., PAH) had no effect. In contrast, cefsulodin and sulfamethoxazole are not substrates of P-gp (B→A/A→B values in MDCK and MDR1-MDCK cells are ∼1).

Conclusions. Our in vitro studies suggest that P-glycoprotein may play a role in increasing renal clearance of drug substrates in CF patients. Dicloxacillin and trimethoprim, which are both substrates of P-gp, show increased active renal clearance in CF patients while cefsulodin and sulfamethoxazole, which are not P-gp substrates, do not show increased active renal clearance in CF patients.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Welsh, L. Tsui, T. Boat, and A. Beaudeut. Cystic Fibrosis. In C. Scriver, A. Beaudet, W. Sly, and V. David (eds.), The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York, 1995 pp. 3799–3876.

    Google Scholar 

  2. 2.

    W. J. Jusko, L. L. Mosovich, L. M. Gerbracht, M. E. Mattar, and S. J. Yaffe. Enhanced renal excretion of dicloxacillin in patients with cystic fibrosis. Pediatrics 56:1038–1044 (1975).

    Google Scholar 

  3. 3.

    S. J. Yaffe, L. M. Gerbracht, L. L. Mosovich, M. E. Mattar, M. Danish, and W. J. Jusko. Pharmacokinetics of methicillin in patients with cystic fibrosis. J. Infect. Dis. 135:828–831 (1977).

    Google Scholar 

  4. 4.

    M. Spino, R. P. Chai, A. F. Isles, J. J. Thiessen, A. Tesoro, R. Gold, and S. M. MacLeod. Cloxacillin absorption and disposition in cystic fibrosis. J. Pediatr. 105:829–835 (1984).

    Google Scholar 

  5. 5.

    R. M. Hutabarat, J. D. Unadkat, C. Sahajwalla, S. McNamara, B. Ramsey, and A. L. Smith. Disposition of drugs in cystic fibrosis. I. Sulfamethoxazole and trimethoprim. Clin. Pharmacol. Ther. 49:402–409 (1991).

    Google Scholar 

  6. 6.

    R. de Groot, B. D. Hack, A. Weber, D. Chaffin, B. Ramsey, and A. L. Smith. Pharmacokinetics of ticarcillin in patients with cystic fibrosis: a controlled prospective study. Clin. Pharmacol. Ther. 47:73–78 (1990).

    Google Scholar 

  7. 7.

    J. P. Wang, J. D. Unadkat, S. M. al-Habet, T. A. O'Sullivan, J. Williams-Warren, A. L. Smith, and B. Ramsey. Disposition of drugs in cystic fibrosis. IV. Mechanisms for enhanced renal clearance of ticarcillin. Clin. Pharmacol. Ther. 54:293–302 (1993).

    Google Scholar 

  8. 8.

    R. de Groot and A. L. Smith. Antibiotic pharmacokinetics in cystic fibrosis. Differences and clinical significance. Clin. Pharmacokinet. 13:228–253 (1987).

    Google Scholar 

  9. 9.

    J. Prandota. Clinical pharmacology of antibiotics and other drugs in cystic fibrosis. Drugs 35:542–578 (1988).

    Google Scholar 

  10. 10.

    E. Rey, J. M. Treluyer, and G. Pons. Drug disposition in cystic fibrosis. Clin. Pharmacokinet. 35:313–329 (1998).

    Google Scholar 

  11. 11.

    F. Sörgel, U. Stephan, H. G. Wiesemann, B. Gottschalk, C. Stehr, M. Rey, H. B. Bowing, H. C. Dominick, and M. Geldmacher von Mallinckrodt. High dose treatment with antibiotics in cystic fibrosis—a reappraisal with special reference to the pharmacokinetics of beta-lactams and new fluoroquinolones in adult CF-patients. Infection 15:385–396 (1987).

    Google Scholar 

  12. 12.

    M. Spino. Pharmacokinetics of drugs in cystic fibrosis. Clin. Rev. Allergy 9:169–210 (1991).

    Google Scholar 

  13. 13.

    D. J. Touw. Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis. Pharm. World Sci. 20:149–160 (1998).

    Google Scholar 

  14. 14.

    A. Arvidsson, G. Alvan, and B. Strandvik. Difference in renal handling of cefsulodin between patients with cystic fibrosis and normal subjects. Acta Paediatr. Scand. 72:293–294 (1983).

    Google Scholar 

  15. 15.

    J. S. Leeder, M. Spino, A. F. Isles, A. M. Tesoro, R. Gold, and S. M. MacLeod. Ceftazidime disposition in acute and stable cystic fibrosis. Clin. Pharmacol. Ther. 36:355–362 (1984).

    Google Scholar 

  16. 16.

    J. Levy, A. L. Smith, J. R. Koup, J. Williams-Warren, and B. Ramsey. Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J. Pediatr. 105:117–124 (1984).

    Google Scholar 

  17. 17.

    M. Spino, R. P. Chai, A. F. Isles, J. W. Balfe, R. G. Brown, J. J. Thiessen, and S. M. MacLeod. Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis. J. Pediatr. 107:64–70 (1985).

    Google Scholar 

  18. 18.

    U. Berg, E. Kusoffsky, and B. Strandvik. Renal function in cystic fibrosis with special reference to the renal sodium handling. Acta Paediatr. Scand. 71:833–838 (1982).

    Google Scholar 

  19. 19.

    A. Hedman, G. Alvan, B. Strandvik, and A. Arvidsson. Increased renal clearance of cefsulodin due to higher glomerular filtration rate in cystic fibrosis. Clin. Pharmacokinet. 18:168–175 (1990).

    Google Scholar 

  20. 20.

    B. Strandvik, U. Berg, A. Kallner, and E. Kusoffsky. Effect on renal function of essential fatty acid supplementation in cystic fibrosis. J. Pediatr. 115:242–250 (1989).

    Google Scholar 

  21. 21.

    W. Breuer, I. N. Slotki, D. A. Ausiello, and I. Z. Cabantchik. Induction of multidrug resistance downregulates the expression of CFTR in colon epithelial cells. Am. J. Physiol. 265:C1711–C1715 (1993).

    Google Scholar 

  22. 22.

    A. E. Trezise, P. R. Romano, D. R. Gill, S. C. Hyde, F. V. Sepulveda, M. Buchwald, and C. F. Higgins. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J. 11:4291–4303 (1992).

    Google Scholar 

  23. 23.

    A. E. Trezise, R. Ratcliff, T. E. Hawkins, M. J. Evans, T. C. Freeman, P. R. Romano, C. F. Higgins, and W. H. Colledge. Co-ordinate regulation of the cystic fibrosis and multidrug resistance genes in cystic fibrosis knockout mice. Hum. Mol. Genet. 6:527–537 (1997).

    Google Scholar 

  24. 24.

    S. Bremer, T. Hoof, M. Wilke, R. Busche, B. Scholte, J. R. Riordan, G. Maass, and B. Tummler. Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosis transmembrane-conductance regulator mRNA transcripts in human epithelia. Eur. J. Biochem. 206:137–149 (1992).

    Google Scholar 

  25. 25.

    C. G. Vanoye, A. F. Castro, T. Pourcher, L. Reuss, and G. A. Altenberg. Phosphorylation of P-glycoprotein by PKA and PKC modulates swelling-activated Cl-currents. Am. J. Physiol. 276:C370–C378 (1999).

    Google Scholar 

  26. 26.

    I. Pastan, M. M. Gottesman, K. Ueda, E. Lovelace, A. V. Rutherford, and M. C. Willingham. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85:4486–4490 (1988).

    Google Scholar 

  27. 27.

    Y. Zhang and L. Z. Benet. Characterization of P-glycoprotein mediated transport of K02, a novel vinylsulfone peptidomimetic cysteine protease inhibitor, across MDR1-MDCK and Caco-2 cell monolayers. Pharm. Res. 15:1520–1524 (1998).

    Google Scholar 

  28. 28.

    F. Jehl, P. Birckel, and H. Monteil. Hospital routine analysis of penicillins. Third-generation cephalosporins and aztreonam by conventional and high-speed high-performance liquid chromatography. J. Chromatogr. 413:109–119 (1987).

    Google Scholar 

  29. 29.

    M. Susanto and L. Z. Benet. Investigating the role of P-glycoprotein on drugs exhibiting enhanced renal clearance in cystic fibrosis patients. In:Proceedings of the Millenial World Congress of Pharmaceutical Sciences, San Francisco, California USA, 16-20 April 2000, pp. 94.

  30. 30.

    J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro p-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:620–628 (2001).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Leslie Z. Benet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Susanto, M., Benet, L.Z. Can the Enhanced Renal Clearance of Antibiotics in Cystic Fibrosis Patients Be Explained by P-Glycoprotein Transport?. Pharm Res 19, 457–462 (2002).

Download citation

  • P-glycoprotein
  • cystic fibrosis
  • renal clearance
  • dicloxacillin
  • trimethoprim
  • cefsulodin
  • sulfamethoxazole