Skip to main content
Log in

Strength and fatigue of polyacid-modified restorative materials (compomers)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the fatigue behavior of a hybrid composite, four compomers, and two viscous glass ionomers after short- and long-term soaking in distilled water. Bars with dimensions of 30 mm×2 mm×2 mm were formed in stainless steel molds, finished with 600 grit SiC, then soaked for either 24 h or one year, and tested in 3-point flexure at stressing rates between 0.001 and 2500 MPa s−1. Data were plotted as fracture stress vs. stressing rate, and the exponent N in the power law for crack growth rate was computed from the slope of these plots. All compomer and resin composite materials tested exhibited subcritical crack growth (i.e. a reduction in strength with a decrease in stressing rate). Soaking lowered the slope for all materials, that is, increased the crack propagation rate. F2000 exhibited an increase in fracture strength while Hytac and Compoglass exhibited a decrease following long-term soaking in distilled water. Crack-growth exponents obtained from these fatigue data were used to estimate the stresses which would result in a five-year lifetime for these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wilson and J. Mclean, in “Glass-Ionomer Cement” (Quintessence Pub. Co., Chicago, 1988).

    Google Scholar 

  2. K. Anusavice, in “Phillips' Science of Dental Materials” 10th edn (W. B. Saunders Company, Philadelphia, 1996).

    Google Scholar 

  3. J. Mclean, J. Nicholson and A. Wilson, Quint. Int. 25 (1994) 587.

    Google Scholar 

  4. I. El-Kalla and F. Garcia-Godoy, Oper. Dent. 24 (1999) 2.

    Google Scholar 

  5. J.-M. Meyer, M. A. Cattani-Lorente and V. Dupuis, Biomaterials 19 (1998) 529.

    Google Scholar 

  6. S. Gladys, M. Braem, P. Lambrechts and G. Vanherle, J. Dent. Res. 76 (1997) 883.

    Google Scholar 

  7. J. Mclean, in “Proceedings of the 2nd International Symposium on Glass Ionomers, Philadelphia, June 1994”, edited by P. R. Hunt (International Symposia in Dentistry PC, Philadelphia, 1994) p. 61.

    Google Scholar 

  8. S. Mitra, in “Proceedings of the 2nd International Symposium on Glass Ionomers, June, 1994”, edited by P. R. Hunt (International Symposia in Dentistry PC, Philadelphia, 1994) p. 13.

    Google Scholar 

  9. A. Peutzfeldt, F. Garcia-Godoy and E. Asmussen, Am. J. Dent. 10 (1997) 15.

    Google Scholar 

  10. A. G. Evans, Int. J. of Fract. 10 (1974) 251.

    Google Scholar 

  11. J. E. Ritter, in “Fracture Mechanics of Ceramics: Crack Growth and Microstructure”, edited by R. C. Bradt, D. P. Hasselman and F. F. Lange (Plenum Press, New York, 1978) p. 667.

    Google Scholar 

  12. C. W. Fairhurst, P. E. Lockwood, R. D. Ringle and S. W. Twiggs, Dent. Mat. 9 (1993) 269.

    Google Scholar 

  13. J. E. Ritter, J. M. Stevens and K. Jakus, J. Mater. Sci. 14 (1979) 2446.

    Google Scholar 

  14. J. I. Mccool, IEEE Trans. on Rel. R24 (1975) 186.

    Google Scholar 

  15. J. I. Mccool, U.S.A.F. Res. Lab. Rep. ARLTR 74-018 (1974).

  16. M. Freund and E. Munksgaard, Scand. J. Dent. 98 (1990) 351.

    Google Scholar 

  17. K. Soderholm, J. Biomed. Mater. Res. 18 (1984) 271.

    Google Scholar 

  18. J. Ferracane, H. Berge and J. Condon. ibid. 42 (1998) 465.

    Google Scholar 

  19. E. A. Wasson and J. W. Nicholson, J. Dent. Res. 72 (1993) 481.

    Google Scholar 

  20. S. Matsuya, T. Maeda and M. Ohta, ibid. 73 (1994) Abstr. 2467.

  21. N. Martin and N. Jedynakiewicz, Biomaterials 19 (1998) 77.

    Google Scholar 

  22. M. A. Cattani-Lorente, V. Dupuis, F. Moya, J. Payan and J.-M. Meyer, Dent. Mat. 15 (1999) 21.

    Google Scholar 

  23. Y. Momoi, K. Hiosaki, A. Kohno and J. F. Mccabe, Dent. Mat. J. 14 (1995) 109.

    Google Scholar 

  24. A. Akashi, Y. Matsuya, M. Unemori and A. Akamine, Biomaterials 20 (1999) 1573.

    Google Scholar 

  25. J. W. Nicholson and M. Alsarheed, J. Oral Rehab. 25 (1998) 616.

    Google Scholar 

  26. A. Kakaboura, G. Eliades and G. Palaghias, J. Dent. Res. 75 (1996) 1218.

    Google Scholar 

  27. G. Eliades, A. Kakaboura and G. Palaghias, Dent. Mater. 14 (1998) 57.

    Google Scholar 

  28. K. M. Hse and S. H. Wei, J. Am. Dent. Ass. 128 (1997) 1088.

    Google Scholar 

  29. L. Papagiannoulis, A. Kakaboura, F. Pantaleon and K. Kavvadia, Pediatr. Dent. 21 (1999) 231.

    Google Scholar 

  30. L. A. Marks, K. L. Weerheijm, W. E. Van Amerongen, H. J. Groen and L. C. Martens, Caries Res. 33 (1999) 387.

    Google Scholar 

  31. K. H. Friedl, K. A. Hiller and G. Schmalz, Oper. Dent. 19 (1994) 228.

    Google Scholar 

  32. A. G. Papathanasiou, M. E. Curzon and C. G. Fairpo, Ped. Dent. 16 (1994) 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Baran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boberick, K.G., McCool, J.I. & Baran, G.R. Strength and fatigue of polyacid-modified restorative materials (compomers). Journal of Materials Science: Materials in Medicine 13, 613–620 (2002). https://doi.org/10.1023/A:1015191230049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015191230049

Keywords

Navigation