Skip to main content
Log in

Logical Models of Molecular Shapes and Their Families

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A new discrete mathematical model of molecular shape is proposed, making use of the partition property of a representation of molecular shape. According to its geometrical and topological structure, a molecular surface can be partitioned into unbounded two-dimensional subsets (domains) and some common subsets of closures of two or more domains. The sets of these domains as a base of a finite topology, containing the Boolean n-cube as a lower Boolean sub-lattice of this topology, defines the domain of the proposed logical model. A logical function can be obtained that reflects the properties of the topological domains as well as the interrelations on the set of domains. Based on classical or quantum-chemical representations of molecular shape, these models allow one the implementation of methods of logical diagnostics in chemistry, and the definition of a metric on the set of molecular shape equivalence classes. The families of molecular shapes can be considered as sets of logical models. The proposed model is unified in the sense that the structures of differentiable and non-differentiable surfaces can be represented in the same mathematical framework. These logical models will also work for interpenetrations of the above types of surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Mezey, Shape in Chemistry: An Introduction to Molecular Shape Topology (VCH, UK, 1993).

    Google Scholar 

  2. P.G. Mezey, in: Concepts and Applications of Molecular Similarity, eds. M.A. Jonson and G.M. Maggiora (Wiley, New York, 1990) p. 321.

    Google Scholar 

  3. P.G. Mezey, in: Reviews in Computational Chemistry, eds. K.B. Lipkowitz and D.B. Boyd (VCH, New York, 1990) p. 265.

    Google Scholar 

  4. G.A. Arteca, N.D. Grant and P.G. Mezey, J. Comput. Chem. 12 (1991) 1138.

    Google Scholar 

  5. G.A. Arteca and P.G. Mezey, Theor. Chem. Acta 81 (1992) 79.

    Google Scholar 

  6. C.E. Dykstra, Ab Initio Calculation of the Structures and Properties of Molecules (Elsevier, Amsterdam, 1988).

    Google Scholar 

  7. P.G. Mezey, in: Conceptual Trends in Quantum Chemistry, eds. J.-L. Calis and E.S. Kryachko (Kluwer Academic, Dordrecht, 1997) p. 519.

    Google Scholar 

  8. P.G. Mezey, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 51 (2000) 267.

    Google Scholar 

  9. G.A. Arteca and P.G. Mezey, Internat. J. Quantum Chem. 34 (1988) 517.

    Google Scholar 

  10. G.A. Arteca and P.G. Mezey, Theor. Chim. Acta 75 (1989) 333.

    Google Scholar 

  11. P.G. Mezey, in: Graph Theoretical Approaches to Chemical Reactivity, eds. D. Bonchev and O. Mekenyan (Kluwer Academic, Dordrecht, 1994) p. 181.

    Google Scholar 

  12. F. Harary and P.G. Mezey, J. Math. Chem. 2 (1988) 377.

    Google Scholar 

  13. P.G. Mezey, in: Computational Chemical Graph Theory, ed. H. Rouvray (Nova, New York, 1990) p. 175.

    Google Scholar 

  14. A.T. Balaban, in: Chemical Topology to Three Dimensional Geometry, ed. A.T. Balaban (Plenum, New York, 1997) p. 1.

    Google Scholar 

  15. L.B. Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976).

    Google Scholar 

  16. M. Randic, Acta Chim. Slov. 44 (1997) 57.

    Google Scholar 

  17. D. Bonchev, J. Mol. Struct. 336 (1995) 137.

    Google Scholar 

  18. P.G. Mezey, Internat. J. Quantum Chem. Quant. Biol. Sympos. 14 (1987) 127.

    Google Scholar 

  19. P.G. Mezey, J. Math. Chem. 2 (1988) 299.

    Google Scholar 

  20. G.A. Arteca and P.G. Mezey, J. Math. Chem. 3 (1989) 43.

    Google Scholar 

  21. A. Badel-Chagnon, P. Tuffery, S. Hazout and P.G. Mezey, Molec. Engrg. 8 (1999) 267.

    Google Scholar 

  22. F. Harary and P.G. Mezey, Theor. Chim. Acta 79 (1991) 379.

    Google Scholar 

  23. F. Harary and P.G. Mezey, Discrete Appl. Math. 19 (1988) 205.

    Google Scholar 

  24. P.G. Mezey, J. Math. Chem. 11 (1992) 27.

    Google Scholar 

  25. P.G. Mezey, Bolyai Soc. Math. Stud. 7 (1999) 323.

    Google Scholar 

  26. P.G. Mezey, in: From Chemical Topology to Three-Dimensional Geometry, ed. A.T. Balaban (Plenum, New York, 1997) p. 25.

    Google Scholar 

  27. P.G. Mezey, Internat. J. Quantum Chem. 51 (1994) 255.

    Google Scholar 

  28. F. Harary and P.G. Mezey, Internat. J. Quantum Chem. 62 (1997) 353.

    Google Scholar 

  29. I.A. Chegis and S.V. Yablonsky, Trudy Mat. Inst. Steklov. 51 (1958) (in Russian).

  30. E.J. McCluskey, Logic Design Principles (Prentice-Hall, Englewood Cliffs, NJ, 1986).

    Google Scholar 

  31. A.B. Frolov, Models and Methods of Technical Diagnostics (Znanie, Moscow, 1990) (in Russian).

    Google Scholar 

  32. L. Goldfarb and A.K.C.Wong, in: Proceedings of 17th IEEE Decision and Control Conference (1979) p. 1086.

  33. A.K.C. Wong and L. Goldfarb, in: Pattern Recognition Theory and Applications, eds. J. Kittler and L.F. Pau (Reidel, Dordrecht, 1982) p. 157.

    Google Scholar 

  34. E. Jako, Development and analysis of methods for canonical logical partitioning of Boolean functions: Applications in systems of logical design, PhD Thesis, MPEI, Moscow (1983).

    Google Scholar 

  35. E. Jako and I. Fabian, Hungarian patent 203173, INT CL:H03K 19/173 (1989).

  36. A.B. Frolov and E. Jako, Trudy Moskov. Energ. Inst. 555 (1981) 125 (in Russian).

    Google Scholar 

  37. E.A. Yakubajtis, Avtomatika i Vitshislitelnaja Technika 1 (1974) 1 (in Russian).

    Google Scholar 

  38. I.I. Zhegalkin, Mat. Sb. 34(1) (1927) 9 (in Russian).

    Google Scholar 

  39. A.B. Frolov and E. Jako, Izvestiya Akademii Nauk SSSR. Tekhnicheskaya Kibernetika 5 (1990) 96 (in Russian).

    Google Scholar 

  40. A. Frolov and E. Jako, Algorithms for Recognition of Partially Ordered Objects and Their Application (Scripta Technica, Wiley, 1991).

    Google Scholar 

  41. E. Jako and P. Ittzés, Abstracta Botanica 22 (1998) 121.

    Google Scholar 

  42. E. Jako, Ordered sets in molecular biology, in: Proc.of Beckman Res.Inst., XVIth Annual Advance, California (1996).

  43. A.A. Bolotov and A. Shajeb, DAN SSSR (1987) 297; 3 (1987) 527 (in Russian).

  44. A.A. Bolotov, Diskretnaya Matematika 8(4) (1996) 62 (in Russian).

    Google Scholar 

  45. A.A. Bolotov and A.B. Frolov, Classification and Recognition in Discrete Systems (MPEI, Moscow, 1997).

    Google Scholar 

  46. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).

    Google Scholar 

  47. G.A. Arteca and P.G. Mezey, J. Comput. Chem. 9 (1988) 554.

    Google Scholar 

  48. G.A. Arteca, V.B. Jammal, P.G. Mezey, J.S. Yadav, M.A. Hermsmeier and T.M. Gund, J. Mol. Graphics 6 (1988) 45.

    Google Scholar 

  49. S.V. Yablonsky, Introduction to Discrete Mathematics (Mir, Moscow, 1988).

    Google Scholar 

  50. R. Lidl and G. Pilz, Applied Abstract Algebra (Springer, Berlin, 1984).

    Google Scholar 

  51. K.H. Rosen, Discrete Mathematics and Its Applications (McGraw-Hill, New York, 1991).

    Google Scholar 

  52. A. Mishchenko and A. Fomenko, A Course of Differential Geometry and Topology (Mir Publisher, Moscow, 1988).

    Google Scholar 

  53. A.V. Aho, J.E. Hopcroft and J.D. Ulman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Reading, MA, 1976).

    Google Scholar 

  54. A.E. Andreev, A.A. Bolotov and A.B. Frolov, Discrete Mathematics: Discrete Optimisation Problems and Complexity of Algorithms (MPEI, Moscow, 2000).

    Google Scholar 

  55. A.B. Frolov and D.A. Frolov, Vestnik MEI 6 (1996) 113 (in Russian).

    Google Scholar 

  56. A.B. Frolov, D.A. Frolov and I.D. Chetrafilov, Vestnik MEI 2 (1996) 201 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.G. Mezey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, A., Jako, E. & Mezey, P. Logical Models of Molecular Shapes and Their Families. Journal of Mathematical Chemistry 30, 389–409 (2001). https://doi.org/10.1023/A:1015190410232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015190410232

Navigation