Skip to main content
Log in

Spectral Element Methods for Transitional Flows in Complex Geometries

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We describe the development and implementation of an efficient spectral element code for simulating transitional flows in complex three-dimensional domains. Critical to this effort is the use of geometrically nonconforming elements that allow localized refinement in regions of interest, coupled with a stabilized high-order time-split formulation of the semi-discrete Navier–Stokes equations. Simulations of transition in a model of an arteriovenous graft illustrate the potential of this approach in biomechanical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anagnostou, G., Maday, Y., Mavriplis, C., and Patera., A. T. (1990). On the Mortar element method: Generalizations and implementation. In Chan, T. F., Glowinski, R., Périaux, J., and Widlund, O. B. (eds.), Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, pp. 157–173.

  2. Arslan, N. (1999). Experimental Characterization of Transitional Unsteady Flow inside a Graft-To-Vein Junction, Ph.D. Thesis, Dept. of Mech. Eng., University of Illinois, Chicago.

    Google Scholar 

  3. Ben Belgacem, F., and Maday, Y. (1994). Nonconforming spectral element methodology tuned to parallel implementation. Comp. Methods. Appl. Mech. Engrg. 116, 59–67.

    Google Scholar 

  4. Bernardi, C., and Maday, Y. (1997). Spectral methods. In Ciarlet, P. G., and Lions, J. L. (eds.), Handbook of Numerical Analysis, Vol. 5, Techniques of Scientific Computing, North Holland, pp. 209–486.

    Google Scholar 

  5. Boyd, J. P. (1998). Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods. J. Comp. Phys. 143, 283–288.

    Google Scholar 

  6. Brown, D. L., and Minion, M. L. (1995). Performance of under-resolved two-dimensional incompressible flow simulations. J. Comp. Phys. 122, 165–183.

    Google Scholar 

  7. Canuto, C. (1988). Spectral methods and the maximum principle. Math. Comp. 51(184), 615–629.

    Google Scholar 

  8. Canuto, C., Russo, A., and Van Kemenade, V. (1998). Stabilized spectral methods for the Navier–Stokes equations: Residual-free bubbles and preconditioning. Comput. Methods Appl. Mech. Engrg. 166, 65–83.

    Google Scholar 

  9. Casarin, M. (1996). Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids, Ph.D. thesis, Technical Report 717, Dept. of Computer Science, Courant Institute.

  10. Dryja, M., and Widlund, O. B. (1987). An Additive Variant of the Schwarz Alternating Method for the Case of Many Subregions, Technical Report 339, Dept. of Computer Science, Courant Institute.

  11. Fischer, P. F. (1998). Projection techniques for iterative solution of A x = b with successive right-hand sides. Comput. Methods Appl. Mech. Engrg. 163, 193–204.

    Google Scholar 

  12. Fischer, P. F. (1997). An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comp. Phys. 133, 84–101.

    Google Scholar 

  13. Fischer, P. F., Miller, N. I., and Tufo, H. M. (2000). An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows. In Bjorstad, P., and Luskin, M. (eds.), Parallel Solution of Partial Differential Equations, Springer-Verlag, Berlin, pp. 158–180.

    Google Scholar 

  14. Fischer, P. F., and Mullen, J. S. (2001). Filter-based stabilization of spectral element methods. Comptes Rendus de l'Académie des sciences Paris, Sér. I. Anal. Numér. 332, 265–270.

    Google Scholar 

  15. Funaro., D. (1993). A new scheme for the approximation of advection-diffusion equations by collocation. SIAM J. Numer. Anal. 30, 1664–1673.

    Google Scholar 

  16. Gottlieb, D. I., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications, SIAM-CBMS, Philadelphia.

    Google Scholar 

  17. Gottlieb, D. I., and Hesthaven, J. S. (2001). Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131.

    Google Scholar 

  18. Henderson, R. D., and Karniadakis, G. E. (1995). Unstructured spectral element methods for simulation of turbulent flows. J. Comput. Phys. 122, 191–217.

    Google Scholar 

  19. Jeong, J., and Hussain, F. (1995). On the identification of a vortex. J. Fluid Mech. 285, 69–94.

    Google Scholar 

  20. Kruse, G. W. (1997). Parallel Nonconforming Spectral Element Methods, Ph.D. thesis, Division of Applied Mathematics, Brown University.

  21. Loth, F., Arslan, N., Fischer, P. F., Bertram, C. D., Lee, S. E., Royston, T. J., Song, R. H., Shaalan, W. E., and Bassiouny, H. S. (2001). Transitional Flow at the Venous Anastomosis of an Arteriovenous Graft: Potential Relationship with Activation of the ERK1/2 Mechanotransduction Pathway. J. Biomech. Eng. accepted.

  22. Lee, S. E., Piersol, N., Loth, F., Fischer, P., Leaf, G., Smith, B., Yedevalli, R., Yardimci, A., Alperin, N., and Schwartz, L. (2000). Automated Mesh Generation of an Arterial Bifurcation Base upon in vivo MR Images, presented at the World Congress on Medical Physics and Bioengineering, Chicago, IL.

  23. Maday, Y., and Patera, A. T. (1989). Spectral element methods for the Navier–Stokes equations. In Noor, A. K. (ed.), State of the Art Surveys in Computational Mechanics, ASME, New York, pp. 71–143.

    Google Scholar 

  24. Maday, Y., Patera, A. T., and Rønquist, E. M. (1990). An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow, J. Sci. Comput. 5(4), 263–292.

    Google Scholar 

  25. Maday, Y., Ould Kaber, S., and Tadmor, E. (1993). Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30, 321–342.

    Google Scholar 

  26. Mavriplis, C. A. (1989). Non Conforming Discretizations and A Posteriori Error Estimations for Adaptive Spectral Element Techniques, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  27. Orszag, S. A. (1980). Spectral methods for problems in complex geometry. J. Comput. Phys. 37, 70–92.

    Google Scholar 

  28. Perot, J. B. (1993). An analysis of the fractional step method. J. Comput. Phys. 108, 51–58.

    Google Scholar 

  29. Quarteroni, A., and Valli, A. (1994). Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, Springer, Berlin.

    Google Scholar 

  30. Rønquist, E. M. (1996). Convection treatment using spectral elements of different order. Internat. J. Numer. Methods Fluids 22, 241–264.

    Google Scholar 

  31. Sherwin, S. J., Shah, O., Doorly, D. J., Peiro, J., Papaharilaou, Y., Watkins, N., Caro, C. G., and Dumoulin, C. L. (2000). The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis. ASME J. Biomech. Eng. 122, 1–10

    Google Scholar 

  32. Tadmor, E. (1989). Convergence of the spectral viscosity method for nonlinear conservation laws. In Dwoyer, D. L., Hussaini, M. Y., and Voigt, R. G. (eds.), 11th International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 323, Springer-Verlag, pp. 548–552.

  33. Tufo, H. M., Fischer, P. F., Papka, M. E., and Blom, K. (1999). Numerical Simulation and Immersive Visualization of Hairpin Vortices, presented at Supercomputing '99, Portland, OR, preprint ANL/MCS-P779–0899, Argonne National Laboratory.

  34. Zang, T. A., Gilbert, N., and Kleiser, L. (1990). Direct numerical simulation of the transitional zone. In Hussaini, Y., and Voigt, R. (eds.), Instability and Transition, Vol. II, ICASE/NASA LaRC Series, Springer-Verlag, 283–299.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, P.F., Kruse, G.W. & Loth, F. Spectral Element Methods for Transitional Flows in Complex Geometries. Journal of Scientific Computing 17, 81–98 (2002). https://doi.org/10.1023/A:1015188211796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015188211796

Navigation