Skip to main content
Log in

Insulin Permeability Across an in Vitro Dynamic Model of Endothelium

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Endothelium insulin permeability was investigated using in vitro, dynamic culture of endothelial cells.

Methods. Endothelial cells were cultured in a hollow fiber apparatus and continuously exposed to a flow. Transendothelial electrical resistance and permeability to [14C]sucrose and [14C]inulin were used to monitor the integrity of the endothelial monolayer.

Results. Under these experimental conditions, measurements of insulin permeability, investigated at increasing hormone concentrations, suggested that the predominant transendothelial insulin fluxes were attributable to bidirectional convective transport rather than to a saturable transport mechanism, in agreement with in vivo experiment results published earlier. Analytical determinations of insulin catabolism demonstrated a low percent of insulin degradation by the endothelium, leading to production of insulin metabolites qualitatively identical to those produced by human monocytes.

Conclusions. The findings of this paper indicated that (a) insulin crosses the endothelial monolayer by paracellular “leak” and endothelial insulin receptors have a minor (if any) role in insulin transport; (b) degradation of the hormone by BAEC is minimal; (c) the in vitro, dynamic culture of endothelial cells presented here should represent a valuable transport model system to study permeability mechanisms of insulin and many other drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. M. Landis, J. R. Pappenheimer. Exchange of substances through capillary walls. In Handbook of Physiology, Circulation. Section 2, Vol. 2. Am. Physiol. Soc. (eds.) W. F. Hamilton cd., Washington, D.C., 1963 pp. 961–1034.

  2. M. Bundgaard. Vescicular transport in capillary endothelium: does it occur? Fed. Proc. 42:2425–2430 (1983).

    Google Scholar 

  3. L. Ghitescu, A. Fixman, M. Simionescu, and N. Simionescu. Specific binding sites for albumin restricted to the plasmalemmal vescicles of continuous capillary endothelium: receptor mediated transcytosis. J. Cell. Biol. 102:1304–1311 (1986).

    Google Scholar 

  4. G. L. King and S. M. Johnson. Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1585 (1985).

    Google Scholar 

  5. R. S. Bar, M. Boes, and A. Sandra. Vascular transport of insulin to rat cardiac muscles. Central role of the capillary endothelium. J. Clin. Invest. 81:1225–1233 (1988).

    Google Scholar 

  6. P. E. Jansson, J. P. Fowelin, H. P. von Schenck, and U. P. Smith. and P N. Lonnroth. Measurements by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Diabetes 42:1469–1473 (1993).

    Google Scholar 

  7. R. S. Bar, J. C. Hoak, and M. L. Peacock. Insulin receptors in human endothelial cells identification and characterization. J. Clin. Endocrinol. Metab. 47:699–702 (1978).

    Google Scholar 

  8. S. G. Milton and V. P. Knutson. Comparison of the function of the tight junctions of endothelial cells and epithelial cells in regulating the movement of electrolytes and macromolecules across the cell monolayer. J. Cell. Physiol. 144:498–504 (1990).

    Google Scholar 

  9. G. M. Steil, M. Ader, D. M. Moore, K. Rebrin, and R. N. Bergman. Transendothelial insulin transport is not saturable in vivo. No evidence for a receptor-mediated process. J. Clin. Invest. 97:1497–1503 (1996).

    Google Scholar 

  10. F. Brunner and T. C. Washer. Contribution of the endothelium to transcapillary insulin transport in rat isolated perfused hearts. Diabetes 47:1127–1134 (1998).

    Google Scholar 

  11. P. F. Davies, K. A. Volin, and M. V. Robotewskyi. Spatial relationship in early signaling events of flow-mediated endothelial mechanotransduction. Ann. Rev. Physiol. 59:527–549 (1997).

    Google Scholar 

  12. G. A. Grant, N. J. Abbott, and D. Janigro. Understanding the physiology of the blood-brain barrier: in vitro models. News Physiol. Sci. 13:287–293 (1998).

    Google Scholar 

  13. R. A. Knazek, P. M. Gullino, P. O. Kohler, and R. L. Dedrik. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178:65–67 (1972).

    Google Scholar 

  14. M. J. Ott, J. L. Olson, and B. J. Ballermann. Chronic in vitro flow promotes ultrastructural differentiation of endothelial cells. Endothelium 3:21–30 (1995).

    Google Scholar 

  15. K. A. Stanness, L. E. Westrum, E. Fornaciari, P. Mascagni, J. A. Nelson, S. G. Stenglein, T. Myers, and D. Janigro. Morphologic and functional characterization of an in vitro blood-brain model. Brain Res. 771:329–342 (1997).

    Google Scholar 

  16. L. Benzi, A. M. Ciccarone, P. Cecchetti, G. DiCianni, F. Caricato, L. Trincavelli, L. Volpe, and R. Navalesi. Intracellular hyperinsulinism: a metabolic characteristic of obesity with and without type 2 diabetes. Diabetes Res. Clin. Pract. 46:231–237 (1999).

    Google Scholar 

  17. L. Benzi, P. Cecchetti, A. M. Ciccarone, and A. Pilo. Insulin degradation in vitro and in vivo: a comparative study in men. Diabetes 43:297–304 (1994).

    Google Scholar 

  18. K. D. Dernovsek and R. S. Bar. Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture. Am. J. Physiol. 33:E244–E251 (1985).

    Google Scholar 

  19. I. Jalal, G. L. King, S. Buchwald, C. R. Kahn, and M. Crettaz. Processing of insulin by bovine endothelial cells in culture. Diabetes 33:794–800 (1984).

    Google Scholar 

  20. L. Benzi, P. Cecchetti, A. M. Ciccarone, and A. Nardone. Inhibition of endosomal acidification in normal cells mimics the derangements of cellular insulin and insulin-receptor metabolism observed in non-insulin-dependent diabetes mellitus. Metabolism 46:1259–1265 (1997).

    Google Scholar 

  21. V. Trischitta, D. Gullo, S. Squatrito, V. Pezzino, I. D. Goldfine, and R. Vigneri. Insulin internalization into monocytes is decreased in patients with type II diabetes mellitus. J. Clin. Endocrinol. Metab. 62:522–528 (1986).

    Google Scholar 

  22. P. W. Kazakoff, T. R. McGuire, E. B. Hoie, M. Cano, and P. L. Iversen. An in vitro model for endothelial permeability: assessment of monolayer integrity. In Vitro Cell Dev. Biol. 31:846–852 (1995).

    Google Scholar 

  23. P. G. Bannon, K. Mi-Jurng, R. T. Dean, and J. Dawes. Augmentation of vascular endothelial barrier function by heparin and low molecular weight heparin. Thromb. Haemost. 73:706–712 (1995).

    Google Scholar 

  24. J. A. Oliver. Endothelium-derived relaxing factor contributes to the regulation of endothelial permeability. J. Cell Physiol. 151:506–511 (1992).

    Google Scholar 

  25. W. C. Duckworth. Insulin degradation: mechanisms, products, and significance. Endocr. Rev. 9:319–345 (1988).

    Google Scholar 

  26. C. W. Patrick, Jr. and L. V. McIntire. Bioengineering contributions in vascular biology at the cellular and molecular level. Trends Cardiovasc. Med. 6:122–129 (1996).

    Google Scholar 

  27. G. Kilic, R. B. Doctor, and J. G. Fitz. Insulin stimulates membrane conductance in a liver cell line. J. Biol. Chem. 276:26762–26768 (2001).

    Google Scholar 

  28. W. P. Paaske and P. Sejersen. Transcapillary exchange of 14Cinulin by free diffusion in channel of fused vesicles. Acta Physiol. Scan. 100:437–455 (1977).

    Google Scholar 

  29. C. Crone. The permeability of capillaries in various organs as determined by use of the 'indicator diffusion' method. Acta Physiol. Scan. 58:292–305 (1963).

    Google Scholar 

  30. K. Shii, S. Baba, K. Yokono, and R. A. Roth. Covalent linkage of 124I-insulin to a cytosolic insulin degrading enzyme. J. Biol. Chem. 260:6503–6506 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Martini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvetti, F., Cecchetti, P., Janigro, D. et al. Insulin Permeability Across an in Vitro Dynamic Model of Endothelium. Pharm Res 19, 445–450 (2002). https://doi.org/10.1023/A:1015187410909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015187410909

Navigation