Skip to main content
Log in

Occlusive Properties of Monolayer Patches: In Vitro and in Vivo Evaluation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Patches can cause a different grade of skin occlusion, depending on matrix composition and thickness, backing layer material. The aim of this work was to verify if in vitro water vapour permeability (WVP) values are predictive of transepidermal water loss (TEWL) and Fourier-transform infrared (FTIR) spectroscopy values measured in vivo after 24 h of methacrylic or acrylic monolayer patches application. The correlation between both in vivo methods has been evaluated.

Methods. The WVP, TEWL and FTIR measurements were performed by using four patches made of a methacrylic or an acrylic polymeric system (250 and 500 μm thickness on a polyurethane backing layer). A fifth patch was made of the methacrylic matrix on a polyvinyl chloride backing layer.

Results. A good correlation was found between TEWL values and IR water/lipid absorbance ratios. The in vitro WVP values are in a good correlation with the results of both in vivo methods: TEWL = −0.01WVP + 21.31 (R2 = 0.9312); FTIR water/lipid ratio = −0.01WVP + 27.15 (R2 = 0.9447).

Conclusions. The in vitro method proposed for measuring the WVP is predictive of the degree of occlusion resulting from the in vivo application of monolayer patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Aly, C. Shirley, B. Cunico, and H. I. Maibach. Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin. J. Invest. Dermatol. 71:378–381 (1978).

    Google Scholar 

  2. J. Faergemann, R. Aly, D. R. Wilson, and H. I. Maibach. Skin occlusion: effect on Pityrosporum orbiculare, skin PCO2, pH, transepidermal water loss, and water content. Arch. Dermatol. Res. 275:383–387 (1983).

    Google Scholar 

  3. A. A. Hartmann. Effect of occlusion on resident flora, skinmoisture and skin-pH. Arch. Dermatol. Res. 275:251–254 (1983).

    Google Scholar 

  4. E. Berardesca and H. I. Maibach. Skin occlusion: treatment or drug-like device? Skin Pharmacol. 1:207–215 (1988).

    Google Scholar 

  5. Y. H. Leow and H. I. Maibach. Effect of occlusion on skin. J. Dermatol. Treatment 8:139–142 (1997).

    Google Scholar 

  6. H. Zhai and H. I. Maibach. Skin occlusion and irritant and allergic contact dermatitis: an overview. Contact Dermatitis 44:201–206 (2001).

    Google Scholar 

  7. J. F. G. Hurkmans, H. E. Boddé, L. M. J. Van Driel, H. Van Doorne, and H. E. Junginger. Skin irritation caused by transdermal drug delivery system during long-term (5 days) application. Br. J. Dermatol. 112:461–467 (1985).

    Google Scholar 

  8. D. Bucks, R. H. Guy, and H. I. Maibach. Effect of occlusion. In Bronaugh R.L., Maibach H.I. (eds.), In vitro percutaneous absorption: Principles, fundamentals and applications. CRC Press, Boca Raton, Florida, 1991 pp. 85–114.

    Google Scholar 

  9. J. Welzel, K. P. Wilhelm, and H. H. Wolff. Skin permeability barrier and occlusion: no delay of repair in irritated human skin. Contact Dermatitis 35:163–168 (1996).

    Google Scholar 

  10. E. Proksch, K. R. Feingold, M. Mao-Qiang, and P. M. Elias. Barrier function regulates epidermal DNA synthesis. J. Clin. Invest. 87:1668–1673 (1991).

    Google Scholar 

  11. P. Treffel, P. Muret, P. Muret-D'Aniello, S. Coumes-Marquet, and P. Agache. Effect of occlusion on in vitro percutaneous absorption of two compounds with different physicochemical properties. Skin Pharmacol. 5:108–113 (1992).

    Google Scholar 

  12. D. Bucks and H. I. Maibach. Occlusion does not uniformely enhance penetration in vivo. In R.L. Bronaugh, H.I. Maibach (eds.) Percutaneos absorption: drug-cosmetics-mechanisms-methodology. 3rd edition, New York, Marcel Dekker Inc., 1999 pp. 81–105.

    Google Scholar 

  13. J. Pinnagoda, R. A. Tupker, T. Agner, and J. Serup. Guidelines for transepidermal water loss (TEWL) measurement. Contact Dermatitis 22:164–178 (1990).

    Google Scholar 

  14. R. O. Potts. In vivo measurements of water content of the stratum corneum using infrared spectroscopy: A review. Cosmetics and Toiletries 100:27–31 (1985).

    Google Scholar 

  15. British Pharmacopoeia. ed. 1993, Appendix XXJ.

  16. P. Minghetti, F. Cilurzo, V. Liberti, and L. Montanari. Dermal therapeutic systems permeable to water vapour. Int. J. Pharm. 158:165–172 (1997).

    Google Scholar 

  17. V. Rogiers. Transepidermal water loss measurements in patch test assessment: the need for standardisation. Curr. Prob. Dermatol. 23:152–158 (1995).

    Google Scholar 

  18. H. Schaefer and T. E. Redelmeier. Prediction and measurement of percutaneous absorption. In H. Schaefer and T. E. Redelmeier (eds) Skin Barrier: Principles of percutaneous absorption, Karger, Basel, 1996, p. 125.

    Google Scholar 

  19. C. W. Blichmann and J. Serup. Reproducibility and variability of transepidermal water loss measurement. Acta Derm. Venereol. 67:206–210 (1987).

    Google Scholar 

  20. S. Giorgini, C. Brusi, M. C. Acciai, L. Gori, and A. Sertoli. Baseline transepidermal water loss in 3 different anatomic regions in healthy and eczematous subjects. Contact Dermatitis 27:112–113 (1992).

    Google Scholar 

  21. M. Gloor, G. Hirsh, and H. Willebrandt. On the use of infrared spectroscopy for the in vitro measurements of the horny layer after application of dermatological ointment. Arch. Dermatol. Res. 271:305–313 (1981).

    Google Scholar 

  22. E. G. Bendit. Infrared absorption spectra of keratin, I: Spectra of ?-, ?-and supercontracted keratin. Biopolymers 4:539–559 (1956).

    Google Scholar 

  23. R. O. Potts, D. B. Guzek, R. R. Harris, and J. E. McKie. A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated totalreflectance infrared spectroscopy. Arch. Dermatol. Res. 277:489–495 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Casiraghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casiraghi, A., Minghetti, P., Cilurzo, F. et al. Occlusive Properties of Monolayer Patches: In Vitro and in Vivo Evaluation. Pharm Res 19, 423–426 (2002). https://doi.org/10.1023/A:1015179209091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015179209091

Navigation