Skip to main content
Log in

H2O2 Production and Response to Stress Conditions by Mitochondrial Fractions from Rat Liver

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Rat liver mitochondria, in different steps of the maturation process, were resolved by differential centrifugation at 1000g (M1), 3000g (M3), and 10,000g (M10), and their characteristics determining susceptibility to stress conditions were investigated. Some parameters did not show gradual changes in the transition from M10 to M1 fraction because of the contamination of the M10 fraction by microsomes and damaged mitochondria with relatively high lipid content. The highest and lowest rates of O2 consumption and H2O2 production were exhibited by M1 and M10 fractions, respectively. Vitamin E and coenzyme Q levels were significantly higher in M10 than in M1 fraction, whereas whole antioxidant capacity was not significantly different. The degree of oxidative damage to lipids and proteins was higher in M1 and not significantly different in M3 and M10 fractions. The order of susceptibility to both oxidative challenge and Ca2+-induced swelling was M1 > M3 > M10. It seems that the Ca2+-induced swelling is due to permeabilization of oxidatively altered inner membrane and leads to discard mitochondria with high ROS production. If, as previous reports suggest, mitochondrial damage is initiating stimulus to mitochondrial biogenesis, the susceptibility of the M1 mitochondria to stressful conditions could be important to regulate cellular ROS production. In fact, it should favor the substitution of the oldest ROS-overproducing mitochondria with neoformed mitochondria endowed with a smaller capacity to produce free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Åkerman, K. E. O., and Wikström, K. F. (1976). FEBS Lett. 68, 191–197.

    Google Scholar 

  • Barja, G. (1999). J. Bioenerg. Biomembr. 31, 347–366.

    Google Scholar 

  • Bernardi, P. (1992). J. Biol. Chem. 267, 8834–8839.

    Google Scholar 

  • Burton, G. W., Joyce, A., and Ingold, K. U. (1983). Arch. Biochem. Biophys. 221, 281–290.

    Google Scholar 

  • Chance, B., Sies, H., and Boveris, A. (1979). Physiol. Rev. 59, 527–605.

    Google Scholar 

  • Chen, H., Pellet, L. J., Anderson, H. J., and Tappel, A. L. (1993). Free Radic. Biol. Med. 14, 473–482.

    Google Scholar 

  • Davies, K. J. A., Quintanhilla, A.T., Brooks, G. A., and Packer, L. (1982). Biochem. Biophys. Res. Commun. 107, 1198–1205.

    Google Scholar 

  • Di Meo, S., de Martino Rosaroll, P., and De Leo, T. (1992). Cell Physiol. Biochem. 2, 283–292.

    Google Scholar 

  • Di Meo, S., Venditti, P., and De Leo, T. (1996). Experientia 52, 786–794.

    Google Scholar 

  • Dionisi, O., Galeotti, T., Terranova, T., and Azzi, A. (1975). Biochim. Biophys. Acta 403, 292–300.

    Google Scholar 

  • Forsmark-Andrée, P., Åberg, F., Norling, B., Nordenbrand, K., Dallner, G., and Ernster, L. (1991). FEBS Lett. 285, 39–43.

    Google Scholar 

  • Fatterpaker, P., Bhuvaneswaran, C., Patwardhan, M.V., and Sreenivasan, A. (1965). In Proceedings of the ICRO International Conference on Cell Biology, Bombay (University Press, eds.), Bombay, p. 445.

  • Gear, A. R. L. (1965). Biochem. J. 95, 118–137.

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., and David, M. M. (1949). J. Biol. Chem. 177, 751–766.

    Google Scholar 

  • Gutteridge, J. M. C. (1987). Biochem. J. 243, 709–714.

    Google Scholar 

  • Hamberger, A., Gregson, N., and Lehninger, A. L. (1969). Biochim. Biophys. Acta 186, 373–383.

    Google Scholar 

  • Heath, R. L., and Tappel, A. L. (1976). Anal. Biochem. 76, 184–191.

    Google Scholar 

  • Hyslop, P. A., and Sklar, L. A. (1984). Anal. Biochem. 141, 280–286.

    Google Scholar 

  • Kuff, E. I., and Schneider, W. C. (1954). J. Biol. Chem. 206, 677–685.

    Google Scholar 

  • Lang, J. K., Gohil, K., and Packer, L. (1986). Anal. Biochem. 157, 106–116.

    Google Scholar 

  • Lanni, A., Moreno, M., Lombardi, A., and Goglia, F. (1996). Int. J. Biochem. Cell. Biol. 28, 337–343.

    Google Scholar 

  • Loschen, G., Azzi, A., Richter, C., and Flohé, L. (1974). FEBS Lett. 42, 68–72.

    Google Scholar 

  • Loschen, G., Flohé, L., and Chance, B. (1971). FEBS Lett. 18, 261–264.

    Google Scholar 

  • Nohl, H., and Stolze, K. (1992). Free Radic. Res. Commun. 16, 409–419.

    Google Scholar 

  • Papa, S., and Skulachev, V. P. (1997). Mol. Cell. Biochem. 174, 305–319.

    Google Scholar 

  • Reznick, A. Z., and Packer, L. (1994). Methods Enzymol. 233, 357–363.

    Google Scholar 

  • Satav, J. G., Katyare, S. S., Fatterpaker, P., and Sreenivasan, A. (1976). Biochem. J. 156, 215–223.

    Google Scholar 

  • Schild, L., Reinheckel, T., Wiswedel, I., and Augustin, W. (1997). Biochem. J. 328, 205–210.

    Google Scholar 

  • Sies, H. (1986). Angew. Chem. Int. Ed. Engl. 25, 1058–1071.

    Google Scholar 

  • Skulachev, V. P. (1996). Quart. Rev. Biophys. 29, 169–202.

    Google Scholar 

  • Stadtman, E. R. (1993). Annu. Rev. Biochem. 62, 797–821.

    Google Scholar 

  • Turrens, J. F., Alexandre, A., and Lehninger, A. L. (1985). Arch. Biochem. Biophys. 237, 408–414.

    Google Scholar 

  • Turrens, J. F., and Boveris, A. (1980). Biochem. J. 191, 421–427.

    Google Scholar 

  • Tzagoloff, A. (1982). Mitochondria, Plenum Press, New York.

    Google Scholar 

  • Venditti, P., Di Meo, S., and De Leo, T. (1996). Cell Physiol. Biochem. 6, 283–295.

    Google Scholar 

  • Venditti, P., De Leo, T., and Di Meo, S. (1997). J. Exp. Biol. 200, 909–914.

    Google Scholar 

  • Venditti, P., De Leo, T., and Di Meo, S. (1999a). Methods Enzymol. 300, 245–252.

    Google Scholar 

  • Venditti, P., Daniele, M. C., Masullo, P., and Di Meo, S. (1999b). Cell Physiol. Biochem. 9, 38–52.

    Google Scholar 

  • Venditti, P., Masullo, P., and Di Meo, S. (1999c). Arch. Biochem. Biophys. 368, 112–120.

    Google Scholar 

  • Venditti, P., Masullo, P., and Di Meo, S. (2001). Int. J. Biochem. Cell. Biol. 33, 293–301.

    Google Scholar 

  • Vercesi, A. E., Kowaltowski, A. J., Grijalba, M. T., Meinicke, A. R., and Castilho, R. F. (1997). Biosci. Rep. 17, 43–52.

    Google Scholar 

  • Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J. Y., Peng, T. I., Jones, P. D., and Wang, X. D. (1997). Science 275, 1129–1132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Di Meo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venditti, P., Costagliola, I.R. & Meo, S.D. H2O2 Production and Response to Stress Conditions by Mitochondrial Fractions from Rat Liver. J Bioenerg Biomembr 34, 115–125 (2002). https://doi.org/10.1023/A:1015175925756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015175925756

Navigation