Skip to main content
Log in

High-Order Algorithms for Large-Eddy Simulation of Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

“Defiltering-Transport-Filtering” (DTF) algorithms are proposed for the large eddy simulation of incompressible flows by using high order methods. These new algorithms are based (i) on an approximate deconvolution method for the modeling of the sub-grid scale stress tensor and (ii) on a semi-Lagrangian method to handle the convective term. Such algorithms are implemented in 3D spectral solvers (one homogeneous direction), using differential operators to handle in an approximate way the filtering and defiltering operations. Stability and dissipation properties of the schema are discussed. Preliminary results, obtained with a Chebyshev collocation solver, for the 3D wake of a cylinder with Reynolds number equal to 1000 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bardina, J., et al. (1983). Improved Turbulence Models Based on Large Eddy Simulation of Homogeneous Incompressible Turbulence, Stanford University, Report TF-19.

  2. Domaradzki, J. A., and Saiki, E. M. (1997). A subgrid-scale model based on the estimation of unresolved scales of turbulence. Phys. Fluids 9(7), 2148–2164.

    Google Scholar 

  3. Geurt, B. J. (1997). Inverse modeling for large-eddy simulation. Phys. Fluids 9(12), 3585–3587.

    Google Scholar 

  4. Fischer, P., and Mullen, J. (2001). Filter-based stabilization of spectral element methods. C. R. Acad. Sci. Paris 332(1), 265–270.

    Google Scholar 

  5. Forestier, M. Y., et al. (2000). Computations of 3D wakes in stratified fluids. Computational Fluid Dynamics Conference ECCOMAS 2000, proc. in CD.

  6. Garnier, E., et al. (1999). On the use of shock-capturing schemes for large-eddy simulation. J. Comp. Phys. 153, 273–311.

    Google Scholar 

  7. Germano, M., et al. (1991). A dynamic sub-grid scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765.

    Google Scholar 

  8. Ghosal, S., and Moin, P. (1995). The basic equations for the large-eddy simulation of turbulent flows in complex geometry. J. Comp. Phys. 118, 24–37.

    Google Scholar 

  9. Ghosal, S. (1996). An analysis of numerical errors in large-eddy simulation of turbulence. J. Comp. Phys. 125, 187–206.

    Google Scholar 

  10. Henderson, R. D. (1997). Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65–112.

    Google Scholar 

  11. Karamanos, G. S., and Karniadakis, G. E. (2000). A spectral vanishing viscosity method for large-eddy simulation. J. Comp. Phys. 163, 22–50.

    Google Scholar 

  12. Katopodes, F. V., et al. (2000). A Theory for the Subfilter-Scale Model in Large-Eddy Simulation, Stanford University. Technical Report 2000-K1.

  13. Kravchenko, A. G., and Moin, P. (1997). On the effect of numerical errors in large-eddy simulations of turbulent flows. J. Comp. Phys. 131, 312–322.

    Google Scholar 

  14. Lesieur, M. (1990). Turbulence in Fluids, Kluwer Academic, Dordrecht.

    Google Scholar 

  15. Lesieur, M., and Métais, O. (1996). New trends in large-eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45–82.

    Google Scholar 

  16. Maday, Y., et al. (1993). Legendre pseudo-spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342.

    Google Scholar 

  17. Maday, Y., et al. (1990). An operator-integration-factor splitting method for time-dependent problems: Application to incompressible fluid flow. J. Sci. Comp. 5(4), 263–292.

    Google Scholar 

  18. Phillips, R. M., and Phillips, T. N. (2000). Flow past a cylinder using a semi-Lagrangian spectral element method. Appl. Num. Math 33, 251–257.

    Google Scholar 

  19. Sabbah, C., and Pasquetti, R. (1998). A divergence-free multi-domain spectral solver of the Navier–Stokes equations in geometries of high aspect ratio. J. Comput. Phys. 139, 359–379.

    Google Scholar 

  20. Sagaut, P. (1998), Introduction à la Simulation des Grandes É chelles pour les Écoulements de Fluide Incompressible, Mathématiques & Applications, Springer.

  21. Stolz, S., and Adams, N. A. (1999). An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11(7), 1699–1701.

    Google Scholar 

  22. Stolz, S., et al. (2001). An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4), 997–1015.

    Google Scholar 

  23. Tadmor, E. (1989). Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44.

    Google Scholar 

  24. Williamson, C. H. K. (1989). Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579–627.

    Google Scholar 

  25. Xu, C. J., and Pasquetti, R. (2001). On the efficiency of semi-implicit and semi-Lagrangian spectral methods for the calculation of incompressible flows. Int. J. Numer. Meth. Fluids 35, 319–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquetti, R., Xu, C.J. High-Order Algorithms for Large-Eddy Simulation of Incompressible Flows. Journal of Scientific Computing 17, 273–284 (2002). https://doi.org/10.1023/A:1015169102227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015169102227

Navigation