Skip to main content

Advertisement

Log in

Novel Water Insoluble Lipoparticulates for Gene Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective was to design and prepare water insoluble lipoparticulates (ISLPs) for efficient gene delivery to lung tissue.

Methods. Nona{(ethylenimine)-co-[(2-aminoethyl)-N-choleseteryl-oxycarbonyl-ethylenimine]} (NEACE-T) was synthesized in both its free-base and chloride salt-forms using linear polyethylenimine (PEI, Mw 423) as a headgroup and cholesteryl chloroformate as a hydrophobic lipid anchor resulting in a T-shaped lipononamer. Semitele- chelic Nα-cholesteryloxycarbonyl nona(ethylenimine) (st-NCNEI-L) was synthesized similarly resulting in a linear lipononamer. As confirmed by 1H-NMR, the site of conjugation was either a primary amine resulting in a linear configuration (st-NCNEI-L) or a secondary amine resulting in a T-shaped configuration (NEACE-T). ISLPs were prepared by combining NEACE-T or st-NCNEI-L with a colipid, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) at 1/1, 1/2, and 2/1 molar ratios and the lipoparticulates were hydrated and filtered. ISLP/p2CMVmIL-12 complexes were characterized for particle size, zeta potential, surface morphology, cytotoxicity, and in vitro transfection efficiency.

Results. Transgene expression was dependent on the site of cholesterol conjugation, lipononamer:colipid molar ratio, and ISLP/p2CMVmIL-12 charge ratios. ISLP/p2CMVmIL-12 complexes were nontoxic to murine colon adenocarcinoma (CT-26) cells at 9/1 (±) or lower, had a mean particle size of 330-400 nm while the ζ potential varied from 36-39 mV. Atomic force microscopy (AFM) showed the surface morphology to be that of an oblate spheroid with a size comparable to that determined by dynamic light scattering. ISLP/p2CMVmIL-12 complexes prepared using free-base NEACE-T:DOPE (1/2) at charge ratios of 3/1 and 5/1 (±) provided the highest levels of transgene expression, 18 times more than the levels provided by the salt-form. Secreted levels of mIL-12 p70 were 75 times higher for ISLP/p2CMVmIL-12 complexes than naked p2CMVmIL-12 and nearly 4 times higher than PEI 25 kDa/p2CMVmIL-12 complexes.

Conclusions. The transfection efficiency of the ISLPs was dependent on the site of cholesterol conjugation, amount of colipid, and charge ratio. The highest levels of transgene expression were provided by NEACE-T:DOPE (1/2)/p2CMVmIL-12 at a 3/1 (±) charge ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. X. Gao and L. Huang. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 179:280–285 (1991).

    Google Scholar 

  2. E. R. Lee, J. Marshall, C. S. Siegel, C. Jiang, N. S. Yew, M. R. Nichols, J. B. Nietupski, R. J. Ziegler, M. B. Lane, K. X. Wang, N. C. Wan, R. K. Scheule, D. J. Harris, A. E. Smith, and S. H. Cheng. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum. Gene Ther. 7:1701–1717 (1996).

    Google Scholar 

  3. P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84:7413–7417 (1987).

    Google Scholar 

  4. G. Byk, C. Dubertret, V. Escriou, M. Frederic, G. Jaslin, R. Rangara, B. Pitard, J. Crouzet, P. Wils, B. Schwartz, and D. Scherman. Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 41: 229–235 (1998).

    Google Scholar 

  5. Y. Yamazaki, M. Nango, M. Matsuura, Y. Hasegawa, M. Hasegawa, and N. Oku. Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther. 7:1148–1155 (2000).

    Google Scholar 

  6. J. S. Choi, E. J. Lee, H. S. Jang, and J. S. Park. New cationic liposomes for gene transfer into mammalian cells with high efficiency and low toxicity. Bioconjug. Chem. 12:108–113 (2001).

    Google Scholar 

  7. X. Zhou and L. Huang. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta 1189:195–203 (1994).

    Google Scholar 

  8. J. Marshall, J. B. Nietupski, E. R. Lee, C. S. Siegel, P. W. Rafter, S. A. Rudginsky, C. D. Chang, S. J. Eastman, D. J. Harris, R. K. Scheule, and S. H. Cheng. Cationic lipid structure and formulation considerations for optimal gene transfection of the lung. J. Drug Target. 7:453–469 (2000).

    Google Scholar 

  9. M. C. Filion and N. C. Phillips. Major limitations in the use of cationic liposomes for DNA delivery. Int. J. Pharm. 162:159–170 (1998).

    Google Scholar 

  10. B. Abdallah, A. Hassan, C. Benoist, D. Goula, J. P. Behr, and B. A. Demeneix. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum. Gene Ther. 7:1947–1954 (1996).

    Google Scholar 

  11. W. T. Godbey, K. K. Wu, and A. G. Mikos. Size matters: Molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res. 45:268–275 (1999).

    Google Scholar 

  12. A. J. Geall, R. J. Taylor, M. E. Earll, M. A. W. Eaton, and I. S. Blagbrough. Synthesis of cholesteryl polyamine carbamates: pKa studies and condensation of calf thymus DNA. Bioconjug. Chem. 11:314–326 (2000).

    Google Scholar 

  13. N. Oudrhiri, J. P. Vigneron, M. Peuchmaur, T. Leclerc, J. M. Lehn, and P. Lehn. Gene transfer by guanidinium-cholesterol cationic lipids into airway epithelial cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 94:1651–1656 (1997).

    Google Scholar 

  14. B. D. Freimark, H. P. Blezinger, V. J. Florack, J. L. Nordstrom, S. D. Long, D. S. Deshpande, S. Nochumson, and K. L. Petrak. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J. Immunol. 160:4580–4586 (1998).

    Google Scholar 

  15. Y. Liu, D. Liggitt, W. Zhong, G. Tu, K. Gaensler, and R. Debs. Cationic liposome-mediated intravenous gene delivery. J. Biol. Chem. 270:24864–24870 (1995).

    Google Scholar 

  16. H. Farhood, R. Bottega, R. M. Epand, and L. Huang. Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim. Biophys. Acta 1111:239–246 (1992).

    Google Scholar 

  17. M. Whitmore, S. Li, and L. Huang. LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther. 6:1867–1875 (1999).

    Google Scholar 

  18. N. S. Templeton, D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis. Improved DNA:liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15:647–652 (1997).

    Google Scholar 

  19. R. I. Mahato, M. Lee, S. Han, A. Maheshwari, and S. W. Kim. Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Mol. Ther. 4:130–138 (2001).

    Google Scholar 

  20. H. Schreier, L. Gagne, T. Bock, G. W. Erdos, P. Druzgala, J. T. Conary, and B. W. Muller. Physicochemical properties and in vitro toxicity of cationic liposome cDNA complexes. Pharm. Acta Helv. 72:215–223 (1997).

    Google Scholar 

  21. R. I. Mahato, K. Kawabata, T. Nomura, Y. Takakura, and M. Hashida. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes. J. Pharm. Sci. 84: 1267–1271 (1995).

    Google Scholar 

  22. A. Maheshwari, R. I. Mahato, J. McGregor, S. Han, W. E. Samlowski, J. S. Park, and S. W. Kim. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol. Ther. 2:121–130 (2000).

    Google Scholar 

  23. J. S. Kim, A. Maruyama, T. Akaike, and S. W. Kim. Terplex DNA delivery system as a gene carrier. Pharm. Res. 15:116–121 (1998).

    Google Scholar 

  24. C. S. Tannenbaum, N. Wicker, D. Armstrong, R. Tubbs, J. Finke, R. M. Bukowski, and T. A. Hamilton. Cytokine and chemokine expression in tumors of mice receiving systemic therapy with IL-12. J. Immunol. 156:693–699 (1996).

    Google Scholar 

  25. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270:18997–19007 (1995).

    Google Scholar 

  26. R. I. Mahato, K. Anwer, F. Tagliaferri, C. Meaney, P. Leonard, M. S. Wadhwa, M. Logan, M. French, and A. Rolland. Biodistribution and gene expression of lipid/plasmid complexes after systemic administration. Hum. Gene Ther. 9:2083–2099 (1998).

    Google Scholar 

  27. Y. Xu and F. C. Szoka, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623 (1996).

    Google Scholar 

  28. A. R. Klemm, D. Young, and J. B. Lloyd. Effects of polyethyleneimine on endocytosis and lysosome stability. Biochem. Pharmacol. 56:41–46 (1998).

    Google Scholar 

  29. S.-O. Han, R. I. Mahato, and S. W. Kim. Water-Soluble Lipopolymer for Gene Delivery. Bioconjug. Chem. 12:337–345 (2001).

    Google Scholar 

  30. D. D. Lasic and Y. Barenholz. From Gene Delivery and Diagnostics to Ecology, Handbook of Nonmedical Applications of Liposomes. Vol. 4, CRC Press, LLC, Boca Raton, Florida (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furgeson, D.Y., Cohen, R.N., Mahato, R.I. et al. Novel Water Insoluble Lipoparticulates for Gene Delivery. Pharm Res 19, 382–390 (2002). https://doi.org/10.1023/A:1015166806366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015166806366

Navigation