Skip to main content
Log in

The Unit-Subduced-Cycle-Index Methods and the Characteristic-Monomial Method. Their Relationship as Group-Theoretical Tools for Chemical Combinatorics

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Among the four methods of the unit-subduced-cycle-index (USCI) approach, the subduced-cycle-index (SCI) method and the partial-cycle-index (PCI) method have been discussed by using adamantane of T d -symmetry as a probe for enumeration problems, where USCIs are derived on the basis of permutaion representations, coset representations (CRs) and marks. After the examination of the SCIs and PCIs, Pólya's theorem that is a standard method of chemical combinatorics has been derived from the USCI approach. As another approach, a new method called the characteristic-monomial (CM) method has been developed by virtue of charactereistic monomials (CMs). The CMs have been derived from Q-conjugacy representations and Q-conjugacy characters, which have been related to irreducible representations and irreducible characters of the standard repertoire of chemical group theory. The two approaches have been compared to discuss group-theoretical tools for chemical combinatorics on a common basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Pólya, Compt. Rend. 201 (1935) 1167–1169.

    Google Scholar 

  2. G. Pólya, Helv. Chim. Acta 19 (1936) 22–24.

    Google Scholar 

  3. G. Pólya, Z. Kristal. (A) 93 (1936) 415–443.

  4. G. Pólya, Acta Math. 68 (1937) 145–254.

    Google Scholar 

  5. N.G. de Bruijn, Indag. Math. 21 (1959) 59–69.

    Google Scholar 

  6. D.H. Rouvray, Chem. Soc. Rev. 3 (1974) 355–372.

    Google Scholar 

  7. F. Harary, E.M. Palmer, R.W. Robinson and R.C. Read, in: Chemical Aplications of Graph Theory, ed. A.T. Balaban (Academic Press, London, 1976) pp. 11–24.

    Google Scholar 

  8. K. Balasubramanian, Chem. Rev. 85 (1985) 599–618.

    Google Scholar 

  9. A.T. Balaban (ed.), Chemical Applications of Graph Theory (Academic Press, London, 1976).

    Google Scholar 

  10. G. Pólya, R.E. Tarjan and D.R. Woods, Notes on Introductory Combinatorics (Birkhäuser, Boston, 1983).

    Google Scholar 

  11. G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds (Springer, New York, 1987).

    Google Scholar 

  12. J.H. Redfield, Am. J. Math. 49 (1927) 433–455.

    Google Scholar 

  13. J.H. Redfield, J. Graph Theory 8 (1984) 205–223.

    Google Scholar 

  14. R.A. Davidson, J. Am. Chem. Soc. 103 (1981) 312–314.

    Google Scholar 

  15. R.C. Read, J. London Math. Soc. 34 (1959) 417–436.

    Google Scholar 

  16. R.C. Read, J. London Math. Soc. 35 (1960) 344–351.

    Google Scholar 

  17. R.C. Read, Canad. J. Math. 20 (1968) 808–841.

    Google Scholar 

  18. E. Ruch, W. Hässelbarth and B. Richter, Theor. Chim. Acta 19 (1970) 288–300.

    Google Scholar 

  19. E. Ruch and D.J. Klein, Theor. Chim. Acta 63 (1983) 447–472.

    Google Scholar 

  20. W.J. Taylor, J. Chem. Phys. 11 (1943) 532.

    Google Scholar 

  21. T.L. Hill, J. Chem. Phys. 11 (1943) 294–297.

    Google Scholar 

  22. D.H. McDaniel, Inorg. Chem. 11 (1972) 2678–2682.

    Google Scholar 

  23. J.E. Leonard, J. Phys. Chem. 81 (1977) 2212–2214.

    Google Scholar 

  24. J.R.L. Flurry, J. Chem. Educ. 61 (1984) 663.

    Google Scholar 

  25. J. Sheehan, Canad. J. Math. 20 (1968) 1068–1076.

    Google Scholar 

  26. A. Kerber and K.-J. Thürlings, in: Combinatorial Theory, eds. D. Jngnickel and K. Vedder (Springer, Berlin, 1982) pp. 191–211.

    Google Scholar 

  27. W. Hässelbarth, Theor. Chim. Acta 67 (1985) 339–367.

    Google Scholar 

  28. J. Brocas, J. Am. Chem. Soc. 108 (1986) 1135–1145.

    Google Scholar 

  29. C.A. Mead, J. Am. Chem. Soc. 109 (1987) 2130–2137.

    Google Scholar 

  30. E.K. Lloyd, J. Math. Chem. 11 (1992) 207–222.

    Google Scholar 

  31. W. Burnside, Theory of Groups of Finite Order, 2nd ed. (Cambridge University Press, Cambridge, 1911).

    Google Scholar 

  32. J.A. Pople, J. Am. Chem. Soc. 102 (1980) 4615.

    Google Scholar 

  33. S. Fujita, Theor. Chim. Acta 76 (1989) 247–268.

    Article  Google Scholar 

  34. S. Fujita, J. Am. Chem. Soc. 112 (1990) 3390–3397.

    Google Scholar 

  35. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991).

    Google Scholar 

  36. S. Fujita, J. Math. Chem. 12 (1993) 173–195.

    Google Scholar 

  37. S. Fujita, Theor. Chim. Acta 82 (1992) 473–498.

    Google Scholar 

  38. S. Fujita, J. Math. Chem. 5 (1990) 99–120.

    Google Scholar 

  39. S. Fujita, Theor. Chem. Acta 91 (1995) 291–314.

    Google Scholar 

  40. S. Fujita, Theor. Chem. Acta 91 (1995) 315–332.

    Google Scholar 

  41. A. Streitwieser Jr., Molecular Orbital Theory for Organic Chemists (Wiley, New York, 1961).

  42. B.S. Tsukerblat, Group Theory in Chemistry and Spectroscopy (Academic Press, London, 1994).

    Google Scholar 

  43. I. Hargittai and H. Hargittai, Symmetry through the Eyes of a Chemist (VCH, Weinheim, 1986).

    Google Scholar 

  44. F.A. Cotton, Chemical Applications of Group Theory (Wiley, New York, 1971).

    Google Scholar 

  45. H.H. Jaffé and M. Orchin, Symmetry in Chemistry (Wiley, Chichester, 1965).

    Google Scholar 

  46. L.H. Hall, Group Theory and Symmetry in Chemistry (McGraw-Hill, New York, 1969).

    Google Scholar 

  47. D.M. Bishop, Group Theory and Chemistry (Clarendon, Oxford, 1973).

    Google Scholar 

  48. S.F.A. Kettle, Symmetry and Structure (Wiley, Chichester, 1985).

    Google Scholar 

  49. M.F.C. Ladd, Symmetry in Molecules and Crystals (Ellis Horwood, Chichester, 1989).

    Google Scholar 

  50. D.C. Harris and M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989).

    Google Scholar 

  51. S. Fujita, Theor. Chem. Acc. 99 (1998) 224–230.

    Google Scholar 

  52. S. Fujita, Bull. Chem. Soc. Jpn. 72 (1999) 13–20.

    Article  Google Scholar 

  53. S. Fujita, Theor. Chem. Acc. 101 (1999) 409–420.

    Google Scholar 

  54. S. Fujita, Bull. Chem. Soc. Jpn. 63 (1990) 315–327.

    Google Scholar 

  55. S. Fujita, Bull. Chem. Soc. Jpn. 71 (1998) 1587–1596.

    Google Scholar 

  56. S. Fujita, Bull. Chem. Soc. Jpn. 71 (1998) 2071–2080.

    Google Scholar 

  57. S. Fujita, Bull. Chem. Soc. Jpn. 71 (1998) 2309–2321.

    Google Scholar 

  58. S. Fujita, unpublished results.

  59. C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Wiley, New York, 1962).

    Google Scholar 

  60. S. Fujita, Theor. Chem. Acc. 99 (1998) 404–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, S. The Unit-Subduced-Cycle-Index Methods and the Characteristic-Monomial Method. Their Relationship as Group-Theoretical Tools for Chemical Combinatorics. Journal of Mathematical Chemistry 30, 249–270 (2001). https://doi.org/10.1023/A:1015166625910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015166625910

Navigation