Astrophysics and Space Science

, Volume 279, Issue 4, pp 389–410 | Cite as

Formation of Intensive Magnetic Flux Tubes in a Converging Flow of Partially Ionized Solar Photospheric Plasma

  • M.L. Khodachenko
  • V.V. Zaitsev


Theoretical model, explaining a phenomenon of formation of Intensive Magnetic Flux Tube (IMFT) in a converging flow of partially ionized solar photospheric plasma is considered. Special attention is paid to the fact of weak ionization (n/nn ∼ 10-4) of plasma in the photosphere. The cases of 2D magnetic slab and cylindric magnetic tube are considered. It was shown that in a converging flow of photospheric plasma thin magnetic tubes, or slabs with the characteristic scale L0 ∼ (1 ÷ 5) ċ 107 cm and magnetic field 1000 ÷ 2000 G can be generated. By this 2D magnetic slabs could be unstable with respect to an exchange instability and appear as an intermediate step during IMFT formation on the boundary of two supergranulation cells. Formation of compact strong magnetic field structures, and their energy balance are discussed. Stationary Joule energy dissipation taking place on the photospheric levels in the models of magnetic slab or IMFT under consideration increases towards the periphery of these objects and can exceed radiation looses. This can cause the occurrence of magnetic tubes with hot external envelopes, and modification of plasma temperature and density distribution, with respect to ones in a quiet atmosphere.


Charge Separation Joule Heating Ambipolar Diffusion Magnetic Tube Photospheric Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakhareva, N.M., Zaitsev, V.V. and Khodachenko, M.L.: 1992, Sol. Phys. 139, 299.CrossRefADSGoogle Scholar
  2. Berger, T.E., Löfdahl, M.G., Shine, R.S. and Title, A.M.: 1998, Astrophys. J. 495, 973.CrossRefADSGoogle Scholar
  3. Brandenburg, A. and Zweibel, E.G.: 1994, Astrophys. J. 427, L91.CrossRefADSGoogle Scholar
  4. Brandenburg, A. and Zweibel, E.G.: 1995, Astrophys. J. 448, 734.CrossRefADSGoogle Scholar
  5. Bulanov, S.V. and Sakai, J.-I.: 1998, Astrophys. J. Suppl. 117, 599.CrossRefADSGoogle Scholar
  6. Furusava, K. and Sakai, J.-I.: 2000, Astrophys. J. 540, 1156.CrossRefADSGoogle Scholar
  7. Galloway, D.J. and Moore, D.R.: 1979, Geophys. Astrophys. Fluid Dyn. 12, 73.zbMATHADSGoogle Scholar
  8. Hanslmeier, A., Kucera, A., Rybak, J., Neunteufel, B. and Wöhl, H.: 2000, Astron. Astrophys. 356, 308.ADSGoogle Scholar
  9. Henoux, J.C. and Somov, B.V.: 1991, Astron. Astrophys. 241, 613.ADSGoogle Scholar
  10. Khodachenko, M.L.: 1996, Astron. Rep. 40, 273.ADSGoogle Scholar
  11. Khodachenko, M.L. and Zaitsev V.V.: 2000, in: Solar Wind-Magnetosphere System-III, (Proceedings of the 3rd International WorkshopThe Solar Wind-Magnetosphere System 3’, Graz, Austria, September 23–27, 1998), Verlag der Österreichischen Academie der Wissenschaften, Wien, p. 33.Google Scholar
  12. Krieg, J., Wunnenberg, M., Kneer, F., Koschinsky, M. and Ritter, C.: 1999, Astron. Astrophys. 343, 983.ADSGoogle Scholar
  13. Mestel, L. and Spitzer, L., Jr.: 1956, Mon. Not. R. Astron. Soc. 116, 503.MathSciNetADSGoogle Scholar
  14. Meyer, F., Schmidt, H.U. and Weiss, N.O.: 1977, Mon. Not. R. Astron. Soc. 179, 741.ADSGoogle Scholar
  15. November, L.J., Toomre, J. and Gebbie, K.: 1979, Astrophys. J. 227, 600.CrossRefADSGoogle Scholar
  16. Parker, E.N.: 1963, Astrophys. J. 138, 552.zbMATHCrossRefADSGoogle Scholar
  17. Parker, E.N.: 1978, Astrophys. J. 221, 368.CrossRefADSGoogle Scholar
  18. Priest, E.R.: 1982, Solar Magnetohydrodynamics, D. Reidel, Publ. Comp.Google Scholar
  19. Rabin, D.: 1992, Astrophys. J. 390, L103.CrossRefADSGoogle Scholar
  20. Ryutova, M., Shine, R., Title, A. and Sakai, J.-I.: 1997, Astrophys. J. 492, 402.CrossRefADSGoogle Scholar
  21. Sakai, J.-I., Kawata, T., Yoshida, K., Furusawa, K. and Cramer, N.F.: 2000, Astrophys. J. 537, 1063.CrossRefADSGoogle Scholar
  22. Salucci, G., Bertello, L., Cavallini, E., Ceppatelli, G. and Righini, A.: 1994, Astron. Astrophys. 285, 322.ADSGoogle Scholar
  23. Schüssler, M.: 1984, Astron. Astrophys. 140, 453.ADSGoogle Scholar
  24. Sen, H.K. and White, M.L.: 1972, Sol. Phys. 23, 146.CrossRefADSGoogle Scholar
  25. Shu, F.H.: 1983, Astrophys. J. 273, 202.CrossRefADSGoogle Scholar
  26. Solanki, S.K.: 1993, Space Sci. Rev. 63, 1.CrossRefADSGoogle Scholar
  27. Spruit, H.C.: 1979, Sol. Phys. 61, 363.CrossRefADSGoogle Scholar
  28. Spruit, H.C. and Zweibel, E.G.: 1979, Sol. Phys. 62, 15.CrossRefADSGoogle Scholar
  29. Suzuki, M. and Sakai, J.-I.: 1996, Astrophys. J. 465, 393.CrossRefADSGoogle Scholar
  30. Vernazza, J.E., Avrett, E.H. and Loeser, R.: 1981, Astrophys. J. Suppl. 45, 635.CrossRefADSGoogle Scholar
  31. Weiss, N.O.: 1966, Proc. Roy. Soc. A293, 310.ADSGoogle Scholar
  32. Zaitsev, V.V. and Khodachenko, M.L.: 1992, Sov. Astron. 36(1), 81.ADSGoogle Scholar
  33. Zaitsev, V.V. and Khodachenko, M.L.: 1997, Radiophys. & Quantum Electronics 40, No. 1–2, 114.Google Scholar
  34. Zaitsev, V.V. and Stepanov, A.V.: 1992, Sol. Phys. 139, 343.CrossRefADSGoogle Scholar
  35. Zayer, I., Solanki, S.K. and Stenflow, J.O.: 1989, Astron. Astrophys. 211, 463.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M.L. Khodachenko
    • 1
  • V.V. Zaitsev
    • 2
  1. 1.Max-Planck-Institut für Extraterrestrische PhysikGarchingGermany
  2. 2.Institute of Applied PhysicsNizhny NovgorodRussia

Personalised recommendations