Skip to main content
Log in

Studies of Lead Zirconate Titanate Sol Aging Part II: Particle Growth Mechanisms and Kinetics

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The kinetics of particle growth in lead zirconate titanate sol gel precursor solutions has been investigated. It was found that chemical reaction limited aggregation was responsible for most of the sol aging, followed by diffusion limited aggregation in the later stage. At the beginning, particles grow by reaction between initial polymers and particles. As the particle number-density increases, a particle-particle aggregation characterised by an exponential growth law becomes the predominant mechanism. When particles grow larger, towards gel formation, the aggregation changes to diffusion limited. Mathematical models derived according to the above mechanisms agreed well with experimentally measured particle growth profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Gurkovich and J.B. Blum, in Ultrastructure Processing of Glasses, Ceramics and Composite, edited by L.L. Hench and D.R. Ulrich (John Wiley, New York, 1984), p. 152.

    Google Scholar 

  2. K.C. Chen, A. Janah, and J.D. Mackensie, in Better Ceramics Through Chemistry II, Materials Research Society Symposium Proceedings, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (MRS, Pittsburgh, PA, 1986), Vol. 73, p. 731.

    Google Scholar 

  3. C. Hsueh and M.L. Mecartney, J. Mater. Res. 6(10), 2208 (1991).

    Google Scholar 

  4. K.Kushida, K.R. Udayakumar, S.B. Krupanidhi, and L.E. Rhine, J. Am. Ceram. Soc. 76(5), 1345 (1989).

    Google Scholar 

  5. R.W. Schwartz, B.C. Bunker, D.B. Dimos, R.A. Assink, B.A. Tuttle, R. Tallant, and I.A. Weinstock, Int. Ferroelectrics 2, 243 (1992).

    Google Scholar 

  6. R.W. Schwartz, J.A. Voigt, B.A. Tuttle, D.A. Payne, T.L. Reichert, and R.S. DaSalla, J. Mater. Res. 12(2), 444 (1997).

    Google Scholar 

  7. Q. Zhang, M.E. Vickers, R.W. Whatmore, and A. Patel, J. Sol-Gel. Sci. & Tech. 11, 141 (1998).

    Google Scholar 

  8. Q. Zhang, R.W.Whatmore, M.E.Vickers, and A. Patel, J.Korean Phys. Soc. 32, S572 (1998).

    Google Scholar 

  9. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Google Scholar 

  10. M. Kolb, R. Botet, and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Google Scholar 

  11. D.A.Weitz, J.S. Huang, M.Y. Lin, and J. Sung, Phys. Rev. Lett. 53, 1657 (1984).

    Google Scholar 

  12. D.A.Weitz, J.S. Huang, M.Y. Lin, and J. Sung, Phys. Rev. Lett. 54(13), 1416 (1985).

    Google Scholar 

  13. R.C. Ball, D.A. Weitz, T.A. Witten and F. Leyvraz, Phys. Rev. Lett. 58(3), 274 (1987), and the references therein.

    Google Scholar 

  14. M. von Smoluchowski, Phys. Z. 17, 593 (1916).

    Google Scholar 

  15. R.M. Ziff, M.H. Ernst, and E.M. Hendriks, J. Phys. A: Math. Gen. 16, 2293 (1983).

    Google Scholar 

  16. P.G.J. van Dongen and M.H. Ernst, J. Phys. A: Math. Gen. 18, 2779 (1985).

    Google Scholar 

  17. P.J. Flory, Principles of Polymer Chemistry (Ithaca, New York, 1953).

  18. W.H. Stockmayer, J. Chem. Phys. 11, 45 (1943).

    Google Scholar 

  19. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

    Google Scholar 

  20. R. Jullien and M. Kolb, J. Phys. A: Math. Gen. 17, L639 (1984).

    Google Scholar 

  21. W.D. Brown and R.C. Ball, J. Phys. A: Math. Gen. 18, L517 (1985).

    Google Scholar 

  22. D.A. Weitz and M.Y. Lin, Phys. Rev. Lett. 57, 2037 (1986).

    Google Scholar 

  23. Q. Zhang, Z. Huang, and R.W. Whatmore, J. Sol-Gel Sci. & Tech. 23, 135 (2002).

    Google Scholar 

  24. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 75(5), 2717 (1988).

    Google Scholar 

  25. C. Sanchez, F. Babonneau, S. Doeuff, and A. Leaustic, in Ultrastructure Processing of Advances Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988).

    Google Scholar 

  26. R.A. Assink and R.W. Schwartz, Chem. Mater. 5, 511 (1993).

    Google Scholar 

  27. Q. Zhang, Z. Huang, M.E. Vickers, and R.W. Whatmore, Int. Ferroelectrics 23, 215 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Zhang, Q. & Whatmore, R. Studies of Lead Zirconate Titanate Sol Aging Part II: Particle Growth Mechanisms and Kinetics. Journal of Sol-Gel Science and Technology 24, 49–55 (2002). https://doi.org/10.1023/A:1015161532663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015161532663

Navigation